K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2023

\(5x^2+2y^2+6xy-8x-4y+4=0\)

\(\Leftrightarrow4x^2+x^2+y^2+y^2+2xy+4xy-8x-4y+4=0\)

\(\Leftrightarrow\left(4x^2+y^2+4+4xy-8x-4y\right)+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left[\left(2x\right)^2+4xy+y^2-4\left(2x+y\right)+2^2\right]+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left[\left(2x+y\right)^2-2\cdot\left(2x+y\right)\cdot2+2^2\right]+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\forall x,y\\\left(x+y\right)^2\ge0\forall x,y\end{matrix}\right.\)  

\(\Rightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2\ge0\forall x,y\)

Mặt khác: \(\left(2x+y-2\right)^2+\left(x+y\right)^2=0\) 

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}2x+y-2=0\\x+y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(-y\right)+y-2=0\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y+y-2=0\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=2\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\) 

Thay x,y vào P ta có:

\(P=2^{2023}+\left(-2\right)^{2023}=2^{2023}-2^{2023}=0\)

Vậy: ... 

Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)

\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)

\(=2^{2023}-1\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 1:

$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$ 

$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$

$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 2:
$8x^3-32y-32x^2y+8x=0$

$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$

$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$

$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)

$\Leftrightarrow x=4y$

Khi đó:

$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

26 tháng 10 2021

Mấy bạn bị lms í=)) dễ v cũng ko biết làm

26 tháng 10 2021

Mình chỉ đăng lên để thử xem coi ai làm đc ko chứ mình cx ko biết làm. Ai jup mình vớiiiiii

20 tháng 12 2020

a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)

Thay x = 15 vào bt A ta có

A = 9 . 15 = 135

b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)

Thay x = -1/5 ; y = - 1/2 vào bt B ta có

\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(=9x^2y^2-xy^3-8x^3\)

Thay x = 1/2 ; y = 2 vào bt C ta có

\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)

d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)

\(=12x^2+12x-3\)

\(\left|x\right|=2\Rightarrow x=\pm2\)

Thay x = 2 vào bt D có

\(D=12.4+12.2-3=69\)

Thay x = - 2 vào bt D ta có

\(D=12.4-12.2-3=21\)

7 tháng 9 2021

\(x^2+4y^2-5x+10y-4xy+20\)

\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)

\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)

\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được : 

\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)

7 tháng 9 2021

\(B=x^2-2xy-2x+2y+y^2\)

\(=x^2-2xy+y^2-2\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được : 

\(=1-2=-1\)

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0$

$(4x^2+y^2+z^2-4xy-4xz+2yz)+y^2+z^2-6y-10z+34=0$

$(2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0$
$(2x-y-z)^2+(y-3)^2+(z-5)^2=0$

Vì $(2x-y-z)^2\geq 0; (y-3)^2\geq 0; (z-5)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó bằng $0$

$\Rightarrow 2x-y-z=y-3=z-5=0$

$\Rightarrow y=3; z=5; x=4$

Khi đó:
$P=0^{2023}+(-1)^{2025}+(5-4)^{2027}=0$