Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : x^2 + y^2 +z^2 = xy + yz + xz
=> 2x^2 + 2y^2 +2z^2 = 2xy + 2yz + 2xz
=> ( x^2 - 2xy + y^2) + ( y^2 - 2yz + z^2 ) + ( z^2 -2xz + x^2 ) =0
=> ( x-y )^2 + ( y-z )^2 + ( z -x)^2 =0
=> x =y=z
thay vào .......
Ta có:\(x^2=1-y^2-z^2\le1\Rightarrow-1\le x\le1\)
Tương tự:\(-1\le y\le1;-1\le z\le1\)
Lại có:\(x^3+y^3+z^3=x^2+y^2+z^2\)
\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x\le1;y\le1;z\le1\) nên \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi \(\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị
\(\Rightarrow S=2020\)
1.x2-9
= (x-3)(x+3)
2. -2x2+2x+12
= -2x2+6x-4x+12
= -2x(x+2)+6(x+2)
= (x+2)(-2x+6)
4. -2x2+2x+24
= -2x2+8x-6x+24
= -2x(x+3)+8(x+3)
= (x+3)(-2x+8)
6. x2-5x+4
= x2-4x-x+4
= x(x-1) -4(x-1)
= (x-1)(x-4)
8. x2-7x+6
= x2-6x-x+6
= x(x-1)-6(x-1)
= (x-1)(x-6)
9. x2+5x+4
= x2+4x+x+4
= x(x+1)+4(x+1)
=(x+1)(x+4)
10. x2+7x+6
= x2 +x+6x+6
= x(x+1)+6(x+1)
= (x+6)(x+1)
K nhé
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)