Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung của n + 3 và 2n + 5 ( \(n\in N\))
Vì n + 3 \(⋮\)d \(\Rightarrow\)2.( n + 3 ) \(⋮\)d \(\Rightarrow\)2n + 6 \(⋮\)d.
Vì 2n + 6 \(⋮\)d ; 2n + 5 \(⋮\)d \(\Rightarrow\)( 2n + 6 ) - ( 2n + 5 ) \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d = 1
Vậy ước chung của n + 3 và 2n + 5 là 1
gọi d là UC của n+3 và 2n+5
=> d là ước của 2(n+3) = 2n+6 = 2n+5 + 1
mà d là ước của 2n+5 => d là ước của 1 => d = 1
Gọi d =(A=n+3;B=2n+5)
=> A;B chia hết cho d
=> B -2A = 2n+5 - n -3 = 2 chai hết cho d
=> d thuộc {1;2}
+ d =2 loại vì B =2n+5 là số lẻ
Vậy d =1
Vậy (A;B) =1
Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :
4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)
=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )
=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau
=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N)
Gọi ƯCLN của 2n + 1 và 3n + 1 là d
Khi đó : 2n + 1 chai hết cho d ; 3n + 1 chia hết cho d
<=> 3.(2n + 1) chia hết cho d ; 2.(3n + 1) chia hết cho d
=> 6n + 3 chai hết cho d và 6n + 2 chia hết cho d
=> (6n + 3) - (6n + 2) = 1 chia hetes cho d
=> 1 chia hết cho d
=> ƯCLN (2n + 1;3n + 1) = 1
=> ƯC(2n + 1;3n + 1) = {1}
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
chú đợi anh tí
Gọi d = ƯCLN(2n + 1; 6n + 5) (d thuộc N*)
=> 2n + 1 chia hết cho d; 6n + 5 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d
=> 6n + 5 - 6n - 3 chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1 ; 2}
Mà 2n + 1 lẻ => d lẻ => d = 1
=> ƯC(2n + 1; 6n + 5) = Ư(1) = {1 ; -1}