Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: \(\sqrt{\dfrac{2}{3-\sqrt{5}}}=\dfrac{\sqrt[4]{2}\cdot\left(\sqrt[2]{5}+1\right)}{2}\)
b: \(\sqrt{\dfrac{a-4}{2\left(\sqrt{a}-2\right)}}=\dfrac{\sqrt{2}\left(\sqrt{a}+2\right)}{2}\)
Bài 7:
1: \(P=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
2: P<1
=>P-1<0
=>\(\dfrac{1}{\sqrt{x}-2}-1< 0\)
=>\(\dfrac{1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}< 0\)
=>\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}>0\)
TH1: \(\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>3\\\sqrt{x}>2\end{matrix}\right.\)
=>\(\sqrt{x}>3\)
=>x>9
TH2: \(\left\{{}\begin{matrix}\sqrt{x}-3< 0\\\sqrt{x}-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< 3\\\sqrt{x}< 2\end{matrix}\right.\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< =x< 4\\x\ne1\end{matrix}\right.\)
7:
a: góc BDC=góc BEC=1/2*sđ cung BC=90 độ
=>CD vuông góc AB tại D và BE vuông góc AC tại E
góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
Xét ΔAEB vuông tại Evà ΔADC vuông tại D có
góc EAB chung
=>ΔAEB đồng dạng với ΔADC
=>AE/AD=AB/AC
=>AE*AC=AB*AD
b: ΔBEC vuông tại E có EO là trung tuyến
nên OB=OE
=>góc BOE=2*góc ACB
Xét ΔABC có CD,BE là đường cao
CD cắt BE tại H
=>H là trực tâm
=>AH vuông góc BC tại K
góc ADE=góc ACB
góc ADC=góc AKC=90 độ
=>ADKC nội tiếp
=>góc KDA+góc KCA=180 độ
=>góc BDK=góc KCA
=>góc EDK=180 độ-2*góc BCA
=>góc EDK+góc EOK=180 độ
=>EDKO nội tiếp
@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ.
Đề ko rõ ràng \(\sqrt{x^2}+x+\dfrac{1}{4}\) hay \(\sqrt{x^2+x+\dfrac{1}{4}}\)??
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
Câu 5:
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Xét tứ giác AEDF có
\(\widehat{EAF}=\widehat{AFD}=\widehat{AED}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác của \(\widehat{FAE}\)
nên AEDF là hình vuông
Lỗi
???