Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A=x2+5y2-2xy+2x-6y+5
=(x2-y2+1-2xy+2x-2y)+(4y2-8y+4)
=(x-y+1)2+(2y-2)2
Ta thấy (x-y+1)2≥0 ∀xy
(2y-2)2≥0 ∀y
⇒(x-y+1)2+(2y-2)2≥0 ∀xy
hay A≥0
Dấu "=" xảy ra ⇔ {x-y+1=0
{2y-2=0
⇔{x-1+1=0
{y=1
⇔{x=0
{y=1
Vậy MinA=0⇔x=0,y=1
a/ \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\) với mọi số thực x
b/ \(A=\left(x-1\right)\left(x-3\right)+11=x^2-4x+14=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)
Suy ra Min A = 10 <=> x = 2
\(B=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
Đặt \(t=x^2+3x\) thì \(B=t^2-1\ge-1\)
Do đó Min B = -1 <=> t = 0 <=> \(\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
c/\(C=5-4x^2+4x=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\)
Suy ra Max C = 6 <=> x = 1/2
\(D=-x^2-4x-y^2+2y=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)
\(=-\left(x+2\right)^2-\left(y-1\right)^2+5\le5\)
Suy ra Max D = 5 <=> (x;y) = (-2;1)
a, 85.12,7+5.3.12,7 c, 37,5.6,5-7,5.3,4-6,6.7,5+3,5.37,5
=12,7.(85+5.3) =37,5.(6,5+3,5)-7,5.(3,4+6,6)
=12,7.(85+15) =37,5.10-7,5.10
=12,7.100 =375-75
=127 =300
b, 52.143-52.39-8.26
=52.(143-39)-8.26
=52.104-8.26
=52.4.26-8.26
=26.(52.4-8)
=26.(208-8)
=26.200
=5200
\(E=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
Vì: \(-\left(x-2\right)^2\le0\)
=> \(-\left(x-2\right)^2+5\le5\)
Vậy GTLN của E là 5 khi x=2
\(F=-x^2+3x+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\)
Vì: \(-\left(x-\frac{3}{2}\right)^2\le0\)
=> \(-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)
Vậy GTLN của F là \(\frac{17}{4}\) khi \(x=\frac{3}{2}\)
\(G=3-10x^2-4xy-4y^2=-\left(x^2+4xy+4y^2\right)-9x^2+3=-\left(x-2y\right)^2-9x^2+3\)
Vì: \(-\left(x-2y\right)^2-9x^2\le0\)
=> \(-\left(x-2y\right)^2-9x^2+3\le3\)
Vậy GTLN của G là 3 khi x=y=0
\(H=-x^2-2y^2+2xy-y+1=-\left(x^2-2xy+y^2\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{5}{4}\)
\(=-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì: \(-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-y\right)^2-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy GTLN của H là \(\frac{5}{4}\) khi \(x=y=\frac{1}{2}\)
Bạn đăng lại cái đề cho mk dễ nhìn được k. Nhìn ngang vầy khó nhìn...
học lớp chuyên à, bài này chỉ gợi ý thôi nhá, nên ko hiểu cứ hỏi, trình bày dài lắm
câu a tách hết ra, rồi nhóm 2m chung
câu b thì... ko biết
câu c nhân 2 vế với 2
câu d chuyển VP sang VT rồi sử dụng hằng đẳng thức nâng cao để giải quyêt, nếu chưa học thì hỏi mình nói cho, nó nắm trong phần thi qua mạng
đề của bn khó thế
lớp mk vừa ktra chiều nãy câu 2 của bn lớp mk chỉ có 2 câu
bài 3:
gọi x(km) là độ dài quãng đường AB(x>0)
khi đó, nữa quãng đường AB là: \(\dfrac{x}{2}\left(km\right)\)
thời gian đi đúng dự định là: \(\dfrac{x}{10}\left(h\right)\)
thời gian đi nữa quãng đường đầu của người đó là: \(\dfrac{\dfrac{x}{2}}{10}=\dfrac{x}{20}\left(h\right)\)
thời gian đi nữa quãng đường sau của người đó là: \(\dfrac{\dfrac{x}{2}}{15}=\dfrac{x}{30}\left(h\right)\)\
đổi: \(30p=\dfrac{1}{2}h\)
theo đề bài, ta có phương trình:
\(\dfrac{x}{20}+\dfrac{x}{30}+\dfrac{1}{2}=\dfrac{x}{10}\)
quy đồng và khử mẫu, ta được phương trình:
\(3x+2x+30=6x\\ \Leftrightarrow5x+30=6x\\ \Leftrightarrow-x=-30\Leftrightarrow x=30\left(TMĐKXĐ\right)\)
vậy độ dài quãng đường AB là 30km