Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/ Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Câu 4:
Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS
hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
7n + 10 5n + 7
<=> 5(7n + 10) <=> 7(5n + 7)
<=> 35n + 50 <=> 35n + 49
Ta thấy 35n + 50 và 35n là hai số liền nhau
Mà hai số liền nhau luôn có ƯCLN là 1 => 7n + 10 và 5n + 7 nguyên tố cùng nhau
Bài 1:
a) A={1;2;3;4;5)
B={-2;-1;0;1;2;3;4;5}
b) \(A\Omega B=\left\{1;2;3;4;5\right\}\)
Bài 2:
a) Vì số đó chia hết cho 2 nhưng chia cho 5 thì dư 3 nên chữ số tận cùng của số đó là 8.
Gọi chữ số cần tìm tiếp theo là x, ta có:
1x8 chia hết cho 9 => 1+x+8 chia hết cho 9
=> 9+x chia hết cho 9
=> x\(\in\){0;9}
Vì số cần tìm nhỏ nhất => x=0
Vậy số tự nhiên cần tìm là 108
b) Các cặp số nguyên tố cùng nhau là: 7 và 10, 7 và 15, 10 và 21.
Bài 3:
a) 25-[49-(23.17-23.14)] b) I-45I+I-15I:3+I10I.5
= 25-[49-23.(17-14)] = 45+15:3+10.5
= 25-[49-8.3] = 45+5+50
= 25-[49-24] =50+50
= 25-25 =100
=0
Bài 4:
a) 4.(x-2)-2=18 b) 18-Ix-1I=2
4.(x-2)=18+2=20 Ix-1I=18-2=16
x-2=20:4=5 => \(x-1\in\left\{-16;16\right\}\)
x=5+2=7 TH1: x-1=16 TH2: x-1=-16
x=16+1=17 x=(-16)+1=-15
Vậy \(x\in\left\{-15;17\right\}\)
Tick nha. Mình khổ công lắm mới làm đó.
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
3. Bh
Ta có: 39 chia a dư 4 và 48 chia a dư 6 (a thuộc N*, a > 6)
=> 39 - 4 \(⋮\)a và 48 - 6 \(⋮\)a
=> 35 \(⋮\)a và 42 \(⋮\)a
=> a thuộc ƯC (35; 42)
35 = 7.5
42 = 2.3.7
ƯCLN (35; 42) = 7
=> ƯC (35; 42) = Ư (7) = {1; 7}
Mà a > 6
=> a = 7
Vậy a = 7
1) Ta có 62002 = ...6
Ta có 22001 = 22000.2 = (24)500 . 2 = (...6)500.2 = (...6).2 = (....2)
Ta có : 71999 = 71996.73 = (74)449 . (...3) = (...1)449 . (...3) = (...1).(...3) = ...3
Ta có : 18177 = 18176.18 = (184)44 . 18 = (...6)44 . 18 = (...6).18 = ....8
2) a. Ta có 175 = 174.17 = (...1).17 = ...7
Lại có 244 = (242)2 = (...6)2 = ...6
Lại có : 1321 = 1320.13 = (134)5 . 13 = (..1)5 . 3 = (...1).3 = ...3
Khi đó 175 + 244 - 13 = ..7 + ...6 - ...3 = ...0 \(⋮\)10
3) Ta có \(\hept{\begin{cases}39:a\text{ dư 4}\\48:a\text{ dư 6}\end{cases}}\Rightarrow\hept{\begin{cases}\left(39-4\right)⋮a\\\left(48-6\right)⋮a\end{cases}}\Rightarrow\hept{\begin{cases}35⋮a\\42⋮a\end{cases}}\Rightarrow a\inƯC\left(35;42\right)\)(đk : a > 4 > 6 => a > 6)
mà 35 = 5.7
42 = 7.2.3
=> ƯCLN(35 ; 42) = 7
ƯC(35 ; 42) = Ư(7) = {1 ; 7}
=> a \(\in\left\{1;7\right\}\)mà a > 6
=> a = 7
4) 16x < 1284
=> (24)x < (27)4
=> 24x < 228
=> 4x < 28
=> x < 7
=> \(x\in\left\{0;1;2;3;4;5;6\right\}\)
b) 5x.5x + 1.5x + 2 \(\le\)100..00 : 218 (18 chữ số 0)
=> 53x + 6 \(\le\)1018 : 218
=> 53x + 6 \(\le\)518
=> 3x + 6 \(\le\)18
=> 3x \(\le\)12
=> x \(\le\)4
=> \(x\in\left\{1;2;3;4\right\}\)