Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{14^5.9^4-6^9.49^2}{2^{10}.49^3.3^8+6^8.7^5.13}\)
\(=\dfrac{2^5.7^5.3^8-2^9.3^9.7^4}{2^{10}.7^6.3^8+2^8.3^8.7^5.13}\)
\(=\dfrac{2^5.7^4.3^8\left(7-2^4.3\right)}{2^8.3^8.7^5\left(2^2.7+13\right)}\)
\(=\dfrac{-41}{2^3.7.41}\)
\(=\dfrac{-1}{56}\)
Kẻ Cz//By (z thuộc nửa mặt phẳng bờ AC chứa B)
Ta có: góc zCB=góc CBy = 30 độ (so le trong)
Mà góc zCB + góc zCA=120 độ
=> góc zCA=90 độ.
=> Cz//Ax (cùng vuông góc AC)
Mà Cz//By => Ax//By
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
sửa lại đề nè:
So sánh: 291 và 535
Ta có: 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927>31257
=> 291>535
Giải:
Theo đề ra, ta có:
\(3x=-2y\Leftrightarrow\dfrac{x}{-2}=\dfrac{y}{3}\)
Và \(2x+y=5\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{-2}=\dfrac{y}{3}=\dfrac{2x}{-4}=\dfrac{2x+y}{-4+3}=\dfrac{5}{-1}=-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{-2}=-5\\\dfrac{y}{3}=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5.\left(-2\right)\\y=-5.3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=-15\end{matrix}\right.\)
Vậy \(x=10\) và \(y=-15\).
Chúc bạn học tốt!!!
\(3x=-2y\)
=>\(\dfrac{x}{-2}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{-2}=\dfrac{y}{3}=\dfrac{2x+7}{2.\left(-2\right)+3}=\dfrac{5}{-1}=-5\)
=>\(x=\left(-5\right).\left(-2\right)=10\)
\(y=-5.3=-15\)
Vậy...
a) Ta có: \(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2017-x^3\)
\(=x^4+4x^2+2017\)
b) Bậc của P(x) là 4
c) Các hệ số của P(x) là 1;4;2017
Hệ số cao nhất là 4
Hệ số tự do là 2017
d) \(P\left(0\right)=0^4+4\cdot0^2+2017=2017\)
\(P\left(1\right)=1^4+4\cdot1^2+2017=1+4+2017=2022\)
\(P\left(-1\right)=\left(-1\right)^4+4\cdot\left(-1\right)^2+2017=1+4+2017=2022\)
e) \(P\left(-a\right)=\left(-a\right)^4+4\cdot\left(-a\right)^2+2017=a^4+4a^2+2017\)
\(P\left(a\right)=a^4+4a^2+2017\)
Do đó: P(-a)=P(a)