Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
Ta có hình vẽ:
Xét tam giác ABC và tam giác ADE có
-A: góc chung
-AB = AD (GT)
-BE = DC (GT)
Vậy tam giác ABC = tam giác ADE (c.g.c)
Ta có :
7x=9y=21z
\(\Rightarrow\frac{7x}{63}=\frac{9y}{63}=\frac{21z}{63}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
\(\Rightarrow\begin{cases}x=-27\\y=-21\\z=-9\end{cases}\)
Có:\(7x=9y=21z\)
=>\(\frac{7x}{63}=\frac{9y}{63}=\frac{21z}{63}\)
=> \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bừng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\begin{cases}x=-27\\y=-21\\z=-9\end{cases}\)
Giải:
a) Có: \(0,\left(37\right)=0,373737373737...\)
\(0,\left(62\right)=0,626262626262...\)
\(\Leftrightarrow0,\left(37\right)+0,\left(62\right)=0,99999999999...\)
Mà \(0,9999999999999...\simeq1\)
Hay \(0,\left(9\right)=1\)
Vậy \(0,\left(37\right)+0,\left(62\right)=1\).
b) \(0,\left(33\right).3=0,99999...=0,\left(9\right)=1\)
Vậy \(0,\left(33\right).3=1\).
Chúc bạn học tốt!!!
\(a)0,\left(37\right)=0,37373737....\)
\(0,\left(62\right)=0,62626262....\)\(\Leftrightarrow0,\left(37\right)+0,\left(62\right)=0,99999999....\)
Mà \(0,99999999....\simeq1\)
hoặc \(0,\left(9\right)\simeq1\)
\(\Rightarrow0,\left(37\right)+\left(0,62\right)=1\)
\(b)0,\left(33\right).3=1\)
\(\Leftrightarrow0,99999999....=0,\left(9\right)\simeq1\)
\(\Rightarrow0,\left(33\right).3=1\)
Chúc bạn học tốt!
\(\left(2x+3\right)^2=25\)
\(\Rightarrow2x+3=5\) hoặc \(2x+3=-5\)
+) \(2x+3=5\Rightarrow2x=2\Rightarrow x=1\)
+) \(2x+3=-5\Rightarrow2x=-8\Rightarrow x=-4\)
Vậy \(x\in\left\{1;-4\right\}\)
\(\left(2x+3\right)^2=25\)
\(\Rightarrow\left(2x+3\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow2x+3=\pm5\)
* Với \(2x+3=5\)
\(2x=5-3\)
\(2x=2\)
\(x=2\div2\)
\(x=1\)
* Với \(2x+3=-5\)
\(2x=-5-3\)
\(2x=-8\)
\(x=-8\div2\)
\(x=-4\)
Vậy \(x\in\left\{1;-4\right\}\)