K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Ta có : \(\dfrac{3n+1}{n+1}=\dfrac{3n+3-2}{n+1}=\dfrac{3\left(n+1\right)-2}{n+1}=3-\dfrac{2}{n+1}\)

Để \(\dfrac{3n+1}{n+1}\) đạt giá trị nguyên thì \(\dfrac{2}{n+1}\) đạt giá trị nguyên

\(\Leftrightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ_{\left(2\right)}\)

\(Ư_{\left(2\right)}\in\left\{1;-1;2;-2\right\}\)

\(\Rightarrow n+1\in\left\{1;-1;2;-2\right\}\)

Ta có bảng sau :

\(n+1\) \(1\) \(-1\) \(\) \(2\) \(-2\)
\(n\) \(0\) \(-2\) \(1\) \(-3\)

Vậy \(n\in\left\{0;-2;1;-3\right\}\)

21 tháng 3 2017

Bn ơi tại sao n = 0 lại loại vậy

0 thuộc Z mà

5 tháng 6 2019

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)

8 tháng 8 2016

Để A đạt GTLN 

suy ra : 3n + 2 lớn nhất ; 2n - 1 nhỏ nhất 

 SAU ĐÓ TỰ GIẢI TIẾP NHÁ

9 tháng 11 2017

a) Để  \(H=\frac{9}{\sqrt{n}-5}\)là 1 số nguyên

\(\Rightarrow9⋮\sqrt{n}-5\Rightarrow\sqrt{n}-5\inƯ\left(9\right)=\left(\pm1;\pm3;\pm9\right)\)

Ta có bảng sau:

\(\sqrt{n}-5\)1-13-39-9
\(\sqrt{n}\)648214-4
\(n\)2.4422.8281.413.74-2

Mà \(n\in Z\Rightarrow n\in\left(2;-2\right)\)

9 tháng 11 2017

con cau nua ban oi

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)

13 tháng 8 2017

A=x+5/x+2

Để A nhận giá trị nguyên thì x+5 chia hết cho x+2 

=> x+5  chia hết cho x+2\

=>(x+2)+3  chia hết cho x+2

Mà x+2 chia hết cho x+2

=>3 chia hết cho x+2 

=>  x+2 thược ước của 3

tự làm tiếp nhé 

k cho mình nhé

13 tháng 8 2017

2, x+1/5=2x-3/4

=> (x+1) .4 =(2x-3).5

=> 4x+4      =10x-15

=>    19       = 6x

=>          x   = 19: 6

=>         x     =19/6

Vậy x=19/6

10 tháng 8 2016

Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1

\(\Rightarrow3\left(4n+3\right)⋮3n+1\)

\(\Rightarrow12n+9⋮3n+1\)

\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)

\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)

\(\Rightarrow5⋮3n+1\)

\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)

+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )

+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )

+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )

+) \(3n+1=-5\Rightarrow n=-2\)

Vậy n = 0 hoặc n = -2

 

20 tháng 8 2017

\(\dfrac{2n+1}{n-1}=\dfrac{2n-2+3}{n-1}=\dfrac{2n-2}{n-1}+\dfrac{3}{n-1}=2+\dfrac{3}{n-1}\)

\(\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)\)

\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét ước

\(n^2+1⋮n+2\)

\(\Rightarrow n^2+2n-2n+1⋮n+2\)

\(\Rightarrow n^2+2n-2n-4+5⋮n+2\)

\(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+5⋮n+2\)

\(\Rightarrow\left(n-2\right)\left(n+2\right)+5⋮n+2\)

\(\Rightarrow5⋮n+2\)

\(\Rightarrow n+2\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét ước

\(\dfrac{n^2-3n+2}{n+1}\)

\(\Rightarrow n^2-3n+2⋮n+1\)

\(\Rightarrow n^2+n-4n+2⋮n+1\)

\(\Rightarrow n^2+n-4n-4+6⋮n+1\)

\(\Rightarrow n\left(n+1\right)-4\left(n+1\right)+6⋮n+1\)

\(\Rightarrow\left(n-4\right)\left(n+1\right)+6⋮n+1\)

\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\)

\(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Xét ước