Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c) Qua D kẻ đường thẳng song song với AC cắt BC tại G
+) ^DGB = ^ACB ( đồng vị )
\(\Delta\)ABC cân tại A => ^ACB = ^ABC
=> ^DGB = ^ABC = ^^DBG => \(\Delta\)DBG cân => DB = DG (1)
+) Có FM //AC ( cùng vuông BH ) => ^FMB = ^ACB = ^ABC ( đồng vị; \(\Delta\)ABC cân )
Xét \(\Delta\)BDM vuông tại D và \(\Delta\)MFB vuông tại F có: BM chung ; ^FMB = ^DBM ( = ^ABC )
=> \(\Delta\)BDM = \(\Delta\)MFB
=> DB = FM ( 2)
Từ (1) ; (2) => FM = DG
Dễ chứng minh FMEH là hình chữ nhật => FM = EH
=> DG = EH = CK (3)
+) Gọi I là giao điểm BC và DK
Xét \(\Delta\)GDI và \(\Delta\)CKI có:
^GDI = ^CKI ( so le trong )
DG = CK ( theo 3)
^DGI = ^KCI ( so le trong )
=> \(\Delta\)GDI = \(\Delta\)CKI
=> DI = KI
=> I là trung điểm của KD
=> BC qua trung điểm KD
mình cũng đang gặp câu hỏi tương tự như vậy bạn ơi
bạn là song chưa giải cho mình với bạn ơi mk cảm thấy khó quá
a: Xét ΔDBM vuông tại D và ΔFMB vuông tại F có
MB chung
góc DBM=góc FMB
=>ΔDBM=ΔFMB
b:
Xét tứ giác FHEM có
FH//EM
FM//HE
=>FHEM là hình bình hành
MD+ME=FB+FH=BH ko đổi
tự vẽ hình nhá!
b; Theo a, ta có tam giác DBM = tam giác FMB( cạnh huyền- góc nhọn)
=> MD = BF (hai cạnh tương ứng) (*)
Ta có : FH vuông góc với AC(1)
ME vuông góc với AC(2)
Từ (1) và (2) suy ra: FH // ME
=> góc H1 = góc M3 (hai góc so le trong)
Xét tam giác MFH và tam giác HEM ta có:
HM: cạnh chung
Góc H1 = góc M3 (cmt)
Suy ra tam giác MFH = tam giác HEM (cạnh huyền - góc nhọn)
=>FH = ME (hai cạnh tương ứng) (**)
Từ (*) và (**) suy ra: MD + ME = BF + FH = BH
Suy ra : BH không đổi
=> MD + ME không đổi
( đpcm)
phần A lm kỉu j vậy