K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

tự vẽ hình nhá!

b; Theo a, ta có tam giác DBM = tam giác FMB( cạnh huyền- góc nhọn)

=> MD = BF (hai cạnh tương ứng) (*)

Ta có : FH vuông góc với AC(1)

ME vuông góc với AC(2)

Từ (1) và (2) suy ra: FH // ME

=> góc H1 = góc M3 (hai góc so le trong)

Xét tam giác MFH và tam giác HEM ta có:

HM: cạnh chung

Góc H1 = góc M3 (cmt)

Suy ra tam giác MFH = tam giác HEM (cạnh huyền - góc nhọn)

=>FH = ME (hai cạnh tương ứng) (**)

Từ (*) và (**) suy ra: MD + ME = BF + FH = BH

Suy ra : BH không đổi

=> MD + ME không đổi

( đpcm)

 

1 tháng 2 2017

phần A lm kỉu j vậy

14 tháng 1 2020

Tham khảo:        Câu hỏi của Lưu Đức Mạnh       

14 tháng 1 2020

Câu c) Qua D kẻ đường thẳng song song với AC cắt BC tại G 

+) ^DGB = ^ACB ( đồng vị )

\(\Delta\)ABC cân tại A => ^ACB = ^ABC 

=> ^DGB = ^ABC  = ^^DBG => \(\Delta\)DBG cân => DB = DG (1)

+) Có FM //AC ( cùng vuông BH ) => ^FMB = ^ACB = ^ABC  ( đồng vị; \(\Delta\)ABC cân )

Xét \(\Delta\)BDM vuông tại D và \(\Delta\)MFB vuông tại F có: BM chung  ; ^FMB = ^DBM ( = ^ABC )

=> \(\Delta\)BDM = \(\Delta\)MFB 

=> DB = FM ( 2)

Từ (1) ; (2) => FM = DG

Dễ chứng minh FMEH là hình chữ nhật  => FM = EH 

=> DG = EH = CK  (3)

+) Gọi I là giao điểm BC và DK 

Xét \(\Delta\)GDI và \(\Delta\)CKI có:

^GDI = ^CKI ( so le trong )

DG = CK ( theo 3)

^DGI = ^KCI ( so le trong )

=> \(\Delta\)GDI = \(\Delta\)CKI 

=> DI = KI 

=> I là trung điểm của KD 

=> BC qua trung điểm KD

19 tháng 4 2018

mình cũng đang gặp câu hỏi tương tự như vậy bạn ơi

bạn là song chưa giải cho mình với bạn ơi mk cảm thấy khó quá

a: Xét ΔDBM vuông tại D và ΔFMB vuông tại F có

MB chung

góc DBM=góc FMB

=>ΔDBM=ΔFMB

b:

Xét tứ giác FHEM có

FH//EM

FM//HE

=>FHEM là hình bình hành

MD+ME=FB+FH=BH ko đổi