Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)
Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2
\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2
Vậy pt có nghiệm (x;y)=(6;0)
Hình như đề sai bạn ơi: Phải là \(x^2+xy+y^2=x^2y^2\)chứ bạn
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+xy+y^2+xy=x^2y^2+xy\)
\(\Leftrightarrow x^2+2xy+y^2=xy.xy+xy\left(1\right)\)
\(\Leftrightarrow\left(x^2+xy\right)+\left(xy+y^2\right)=xy.\left(xy+1\right)\)
\(\Leftrightarrow x.\left(x+y\right)+y.\left(x+y\right)=xy.\left(xy+1\right)\)
\(\Leftrightarrow\left(x+y\right).\left(x+y\right)=xy.\left(xy+1\right)\left(2\right)\)
\(\text{Từ (1) bạn có thể suy ra (2) luôn nha vì áp dụng hằng đẳng thức,mình ghi vậy cho bạn hiểu thôi.}\)
\(\text{Ta có VP:}xy\text{ và }xy+1\text{ là hai số liên tiếp nhau}\left(3\right)\)
\(\text{Mà VT lại là:}xy\text{ và }xy\text{ là hai số bằng nhau}\left(4\right)\)
\(\text{Từ (3) và (4)}\Rightarrow\text{Không có giá trị của }x,y\Rightarrow x,y\in\varnothing\)
\(\text{Vậy }x,y\in\varnothing\)
Đáp án là:
x = 2010 hoặc 2008 và y = 3 hoặc -3.
x = 2012 hoặc 2006 và y = 1 hoặc -1.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)