Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(2-x+\frac{6}{x+2}\right)\)
\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{-\left(x-2\right)\left(x+2\right)}{x+2}+\frac{6}{x+2}\right)\)
\(=\left(\frac{2x-2-2x+4}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{-\left(x^2-4\right)+6}{x+2}\right)\)
\(=\frac{2}{\left(x+2\right)\left(x-2\right)}.\frac{x-2}{-\left(x^2-4\right)+6}=\frac{2}{-\left(x+2\right)^2\left(x-2\right)+6}\)
Thay x = 4 ta được :
\(\frac{2}{-\left(4+2\right)^2\left(4-2\right)+6}=\frac{2}{-26}=-\frac{1}{13}\)
Tương tự với x = -4
1000000000000000000000200000000000000000000000003000000000000000400000000000000
+ Trường hợp 1:
Nếu \(x\ge2\)phương trình đã cho trở thành: \(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\)
\(\Leftrightarrow x^2\left(x^2-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\left(l\right)\\x=\sqrt{5}\left(tm\right)\\x=-\sqrt{5}\end{cases}}\)(Dấu ngặc vuông nha)
+ Trường hợp 2:
Nếu \(x< 2:\)phương trình đã cho trở nhành:\(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\left(vn\right)\)
Vậy phương trình có nghiệm là \(x=\sqrt{5}\)
\(\left|x-2\right|\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
+) Xét \(x\ge2\)
\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=4\)
\(\Leftrightarrow x^4-4x^2-x^2+4=4\)
\(\Leftrightarrow x^4-5x^2=0\)
\(\Leftrightarrow x^2\left(x^2-5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}\)
Chỉ thấy \(\sqrt{5}>\sqrt{4}=2\)nên \(\sqrt{5}\)là 1 nghiệm của pt đang xét.
+) Xét \(x< 2\)
\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=-4\)
\(\Leftrightarrow x^4-4x^2-x^2+4=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\)(1)
Đặt \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-5t+8=0\)(2)
Mà \(t^2-5t+8=\left(t-\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\) (2) không xảy ra
Lúc đó pt đang xét vô nghiệm.
Vậy \(S=\left\{\sqrt{5}\right\}\)
4) (3x-2)(x-3)= 3x(x-3)-2(x-3)
=3x.x+3x.(-3)-2.x-2.(-3)
=\(3x^2\)-9x-4x+6
=\(3x^2\)+(-9x-4x)+6
=\(3x^2\)-13x+6
5) (2x+1)(x+3)=2x(x+3)+1(x+3)
=2x.x+2x.3+1.x+1.3
=\(2x^2\)+6x+1x+3
=\(2x^2\)+(6x+1x)+3
=\(2x^2\)+7x+3
6) (x-3)(3x-1)=x(3x-1)-3(3x-1)
=x.3x+x.(-1)-3.3x-3.(-1)
=\(3x^2\)-1x-9x+3
=\(3x^2\)+(-1x-9x)+3
=\(3x^2\)-10x+3
rút gọn biểu thức
A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)
=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)
=\(x^2\)-\(x^2\)+1x-4x+4
=(\(x^2-x^2\))+(1x-4x)+4
= -3x+4
B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)
=\(x^2+2x\)-x.x-x.4+2.x+2.4
=\(x^2+2x-x^2-4x+2x+8\)
=(\(x^2-x^2\))+(2x-4x+2x)+8
=8
tính giá trị biểu thức
A=3(x-2)-(2+x)(x-3)
=3.x+3.(-2)-2(x-3)-x(x-3)
=3x-6-2.x-2.(-3)-x.x-x(-3)
=3x-6-2x+6-\(x^2\)+3x
=(3x-2x+3x)+(-6+6)\(-x^2\)
=4x - \(x^2\)
thay x=-8 vào biểu thức thu gọn ta được:
4.(-8)- (-8)\(^2\)
= - 32 +64
= 32
B= x(3-x)-(1+x)(1-x)
=x.3+x.(-x)-1(1-x)-x(1-x)
=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)
=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)
=(3x+1x-1x)+(\(-x^2+x^2\))-1
=3x-1
thay x=-5 vào biểu thức thu gọn ta được:
3.(-5)-1
=-15-1
=-16
Thu gọn biểu thức
4) (3x - 2) (x - 3)
= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )
= 3x2 - 2x - 3x x 3 + 2 x 3
= 3x2 - 2x - 9x + 6
= 3x2 - 11x + 6
5) (2x + 1) (x + 3)
= ( 2x2 + 1x ) + ( 6x + 3 )
= 2x2 + 1x + 6x + 3
= 2x2 + 7x + 3
6) (x - 3) (3x - 1)
= ( 3x2 - 9x ) - ( x - 3 )
= 3x2 - 9x - x + 3
= 3x2 - 10 + 3
Rút gọn biểu thức
A) x^2 - (x + 4) (x - 1)
= x2 - ( x2 + 4x ) - ( x + 4 )
= x2 - x2 - 4x - x - 4
= -5x - 4
B) x (x + 2) - (x - 2) (x + 4)
= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )
= x2 + 2x - x2 + 2x + 4x - 8
= 8x - 8
Tính giá trị biểu thức
A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8
Thế x = -8 vào, ta có :
= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )
= 3 x ( -10 ) - ( - 6 ) ( -11 )
= -30 - 66
= -96
B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5
Thế x = - 5 vào, ta có :
= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )
= -5 x 8 - (-4) x 6
= - 40 - -24
= -40 + 24
= -16
100% đúng
hok tốt nha
a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)
\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)
\(< =>12-2+4x-2x^2=6x^2-13x+6\)
\(< =>10+4x-2x^2-6x^2+13x-6=0\)
\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)
b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)
\(< =>x-9=0< =>x=9\)
c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)
\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)
d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)
\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)
e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)
\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)
f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)
\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)
g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)
\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)
h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
\(< =>x^2-16-6x+4=x^2-8x+16\)
\(< =>x^2-6x-12-x^2+8x-16=0\)
\(< =>2x-28=0< =>x=\frac{28}{2}=14\)
q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề
dùng cách nhân một lượng liên hiệp vào phần bt đã cho, sau đó quy đổi ra đơn vị gần giống bt sau ( có mũ 4) nhé
ví dụ chẳng hạn : \(\frac{a-b}{a+b}=\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)^2}=\frac{a^2+b^2}{\left(a+b\right)^2}\)
-nhưng bn ơi nó bảo tính theo a mak