Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(k=\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.\left(3^2\right)^2}{3^5.\left(2^4\right)^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{8.1}{3.1}=\frac{8}{3}\)
b) \(N=\frac{9^3.27^2}{6^2.3^{10}}=\frac{\left(3^2\right)^3.\left(3^3\right)^2}{\left(2.3\right)^2.3^{10}}=\frac{3^6.3^6}{2^2.3^2.3^{10}}=\frac{3^{12}}{4.3^{12}}=\frac{1}{4}\)
\(\frac{131.145+100}{45-132.140}=\frac{132.145-45}{45-132.140}=-1\)
\(\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5+2.49^5}=\frac{7^{11}.7-7^{11}.1}{7^{10}.5+2.7^{10}}=\frac{7^{11}.\left(7-1\right)}{7^{10}.\left(5+2\right)}=\frac{7^{11}.6}{7^{11}}=6\)
a) \(K=\frac{2^{11}\cdot9^2}{3^5\cdot16^2}=\frac{2^{11}\cdot3^4}{3^5\cdot2^8}=\frac{2^3}{3}=\frac{8}{3}\)
b) \(N=\frac{9^3\cdot27^2}{6^2\cdot3^{10}}=\frac{3^6\cdot3^6}{2^2\cdot3^2\cdot3^{10}}=\frac{1}{4}\)
c) \(P=\frac{27^{15}\cdot5^3\cdot8^4}{25^2\cdot81^{11}\cdot2^{11}}=\frac{3^{45}\cdot5^3\cdot2^{12}}{5^4\cdot3^{44}\cdot2^{11}}=\frac{3\cdot2}{5}=\frac{6}{5}\)
\(A=\frac{\left(9^2\right)^{11}.3^{17}}{\left(3^3\right)^{10}.9^{15}}=\frac{9^{22}.3^{17}}{3^{30}.9^{15}}=\frac{9^7}{3^{12}}=9\)
a) \(3^2.\frac{1}{243}.81^2.\frac{1}{3^2}=\frac{1.81^2}{243}.\frac{3^2}{3^2}=\frac{6561}{243}.1=27\)
b, \(4^6.256^2.2^4=2^{12}.2^{16}.2^4=2^{32}\)
c) \(A=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)(Mình rút gọn lun cho nhanh nhé ) \(\Rightarrow A=\frac{4}{5}\)
d) \(\Rightarrow B=70\)k cho mình nha Cô Nàng Họ Dương
Đây nhé : ý a,b mình đã giải thích rồi
c) \(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}=\frac{12}{15}=\frac{4}{5}\)\(\frac{4}{5}\)
d) \(=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}=\frac{2^4.5^3.\left(5+2\right)}{2^3.5^2}=2.5.7=70\)
\(A=\frac{49^2\cdot3^{11}}{81^2\cdot21^5}\)
\(=\frac{\left(7^2\right)^2\cdot3^{11}}{\left(3^4\right)^2\cdot\left(3\cdot7\right)^5}\)
\(=\frac{7^4\cdot3^{11}}{3^8\cdot3^5\cdot7^5}\)
\(=\frac{7^4\cdot3^{11}}{3^{13}\cdot7^5}\)
\(=\frac{1}{3^2\cdot7}=\frac{1}{63}\)
Bài làm :
Ta có :
\(A=\frac{49^2\cdot3^{11}}{81^2\cdot21^5}\)
\(A=\frac{\left(7^2\right)^2\cdot3^{11}}{\left(3^4\right)^2\cdot\left(3\cdot7\right)^5}\)
\(A=\frac{7^4\cdot3^{11}}{3^8\cdot3^5\cdot7^5}\)
\(A=\frac{7^4\cdot3^{11}}{3^{13}\cdot7^5}\)
\(A=\frac{1}{3^2\cdot7}\)
\(A=\frac{1}{63}\)
Vậy A=1/63