Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk lm mẫu cho bạn 1 phần nhé
a) \(A=3x^2+y^2+10x-2xy+26\)
\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)
\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)
Dấu "=" xảy ra <=> \(x=y=-2,5\)
Vậy MIN A = 13,5 khi x = y = - 2,5
G = x2 - 3x + 5
= ( x2 - 3x + 9/4 ) + 11/4
= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinG = 11/4 <=> x = 3/2
H = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinH = 5 <=> x = 0
I = x2 - 2x + y2 - 4y + 10
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 5
= ( x - 1 )2 + ( y - 2 )2 + 5 ≥ 5 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
=> MinI = 5 <=> x = 1 ; y = 2
K = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2 ≥ 2 ∀ x, y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
=> MinK = 2 <=> x = y = -1/2
E = 2x2 + y2 + 2xy - 4x + 14
= ( x2 + 2xy + y2 ) + ( x2 - 4x + 4 ) + 10
= ( x + y )2 + ( x - 2 )2 + 10 ≥ 10 ∀ x, y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2\end{cases}}\)
=> MinE = 10 <=> x = 2 ; y = -2
Ta có:
A = 2x2 + 2xy + y2 - 2x + 2y + 2
A = (x2 + 2xy + y2) + 2(x + y) + 1 + (x2 - 4x + 4) - 3
A = (x + y)2 + 2(x + y) + 1 + (x - 2)2 - 3
A = (x + y + 1)2 + (x - 2)2 - 3 \(\ge\)-3 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=-2-1=-3\\x=2\end{cases}}\)
Vậy MinA = -3 <=> x = 2 và y = -3
\(2x^2+2xy+y^2-2x+2y+\)\(2\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+2\right)-1\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-1\)
Ta thấy \(\left(x+y+1\right)^2\ge0\) \(\forall x,y\)
\(\left(x-2\right)^2\ge0\) \(\forall x\)
=> \(\left(x+y+1\right)^2+\left(x-2\right)^2\ge0\) \(\forall x,y\)
=> \(\left(x+y+1\right)^2+\left(x-2\right)^2-1\ge-1\)
hay \(A\ge-1\)
\(MinA=-1\)\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
a)Ta có: \(A=x^2+5y^2-2xy+4y+3\)= \(\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
= \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
(Do \(\left(x-y\right)^2\ge0;\left(2y+1\right)^2\ge0\))
Vậy min A=2. Dấu = khi x=y=-1/2
b) Đặt \(t=x^2-2x+1\)
=> \(B=\left(t-1\right)\left(t+1\right)\)=\(t^2-1\)=\(t^2+\left(-1\right)\ge-1\)
Do \(t^2\ge0\)
Vậy min B=-1. Dấu = khi t=0 hay \(x^2-2x+1=0\)
=> \(\left(x-1\right)^2=0\)<=> x=1
Ta có : \(x^2+y^2-2x+4y+1\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)
\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)
Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)
Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)
Vậy \(A_{min}=-4\) khi x = 1 và y = -2
\(A=2x^2+5y^2-2xy+2y+2x\)
\(2A=4x^2+10y^2-4xy+4y+4x\)
\(2A=\left(4x^2-4xy+y^2\right)+9y^2+4y+4x\)
\(2A=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(9y^2+6y+1\right)-2\)
\(2A=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\)
Do \(\left(2x-y+1\right)^2\ge0\)
\(\left(3y+1\right)^2\ge0\)
\(\Rightarrow2A\ge-2\)
\(\Leftrightarrow A\ge-1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x-y+1=0\\3y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-1}{3}\end{cases}}\)
Vậy ...
\(A=x^2-2xy+y^2+x^2+2x+1+y^2+2y+1+3y^2-2\)
\(A=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\)
\(Do\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2>=0\)
\(nenA>=-2\)
vậy gtnn của A là -2