Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do: n là số tự nhiên nên n(n+1)(n+2) là tích của ba số tự nhiên liên tiếp
Cho nên: trong ba số n, n+1 và n+2 luôn có hai số chia hết cho 2
=>n(n+1)(n+2) chia hết cho 2
Mặt khác: trong ba số n, n+1 và n+2 luôn có 1 số chia hết cho 3
=>n(n+1)(n+2) chia hết cho 3
Mà: 2 và 3 là hai số nguyên tố cùng nhau
Nên: n(n+1)(n+2) chia hết cho BCNN(2;3)=6
Vậy n(n+1)(n+2) chia hết cho 6 với mọi n là số tự nhiên
TL:
n(n+1)(2n+1)
= n(n+1)(n+2+n-1)=
n(n+1)(n+2)+(n-1)(n+1)n
Vì ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
~ học tốt~
A = 10^n + 18n - 1
A = 10^n - 1 - 9n + 27n
A = 99...9 - 9n + 27n
( n chữ số 9)
A = 9.(11...1 - n) + 27n
( n chữ số 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 nên 11...1 - n chia hết cho 3 => 11...1 - n = 3k( k thuộc N)
=> A = 9.3k + 27n
A = 27k + 27n = 27.(k+n) chia hết cho 27
Chứng tỏ A chia hết cho 27 với n là số tự nhiên
A = 10^n + 18n - 1
A = 10^n - 1 - 9n + 27n
A = 99...9 - 9n + 27n
(n chữ số 9)
A = 9.(11...1 - n) + 27n
( n chữ số 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 nên 11...1 - n chia hết cho 3 => 11...1 - n = 3k( k thuộc N)
=> A = 9.3k + 27n
A = 27k + 27n = 27.(k+n) chia hết cho 27
Chứng tỏ A chia hết cho 27 với n là số tự nhiên
Nếu n=3k (k thuộc N) thì n.(n+10).(n+2) chia hết cho 3
Nếu n=3k+1 (k thuộc N) thì n+2 = 3k+1+2 = 3k+3 = 3.(k+1) chia hết cho 3 => n.(n+10).(n+2) chia hết cho 3
Nếu n=3k+2 (k thuộc N) thì n+10 = 3k+2+10 = 3k+12 = 3.(k+4) chia hết cho 3 => n.(n+10).(n+2) chia hết cho 3
Vậy n là số tự nhiên thì n.(n+10).(n+2) chia hết cho 3
k mk nha
đem chia n cho 3 xảy ra 3 khả năng về số dư : dư 0 hoặc dư 1 hoặc dư 2
+) nếu n chia cho 3 dư 0 => n chia hết cho 3
khi đó n * ( n + 10 ) * ( n + 2 ) chia hết cho 3
+) nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N )
khi đó n + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n * ( n + 10 ) * ( n + 2 ) chia hết cho 3
+) nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N )
khi đó n + 10 = 3k + 2 + 10 = 3k + 12 = 3 ( k + 4 ) chia hết cho 3
=> n * ( n + 10 ) * ( n + 2 ) chia hết cho 3
vậy n * ( n + 10 ) * ( n + 2 ) chia hết cho 3
chúc bạn học tốt ^^
\(3^{n+2}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^n\times3\times4+2^n\times4\times3\)
\(=12\left(3^n+2^n\right)\)
vì 12 chia hết cho 6 nên 3n+2+3n+1+2n+3+2n+2 chia hết cho 6
ta thấy n , n+1 , n+2 là 3 số tự nhiên liên tiếp
->trong đó chắc chắn có 1 số chẵn hay có 1 số chia hết cho 2
->n.(n+1).(n+2) chia hết cho 2
lại có: trong 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3
->n.(n+1).(n+2) chia hết cho 3
tích đó chia hết cho 2 và 3 ->tích đó chia hết cho 2.3
->n(n+1)(n+2) chia hết cho 6
mình cũng không chắc nữa
TK : https://hoidap247.com/cau-hoi/1052787