Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
Thay ............... :
\(\left(\left(-4\right)-y-2.45\right)\left(\left(-4\right)-y+2.45\right)\)
\(=\left(-y-49\right)\left(86-y\right)\)
Bài 1:
\(VT=1\cdot\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\cdot\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)
\(=\left(a^4-b^4\right)\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)
\(=a^{32}-b^{32}\)
Ta có
(x+y+z)^2=x^2+y^2+z^2+2 (xy+yz+zx )
<=>x^2+y^2+z^2=0
<=>x=y=z=0
Ta có:\(2\left(x-y\right)\left(z-y\right)+2\left(y-z\right)\left(z-x\right)+2\left(y-z\right)\left(x-z\right)\)
\(=2\left[\left(x-y\right)\left(z-y\right)+\left(y-x\right)\left(z-x\right)+\left(y-z\right)\left(x-z\right)\right]\)
\(=2\left[xz-xy-yz+y^2+yz-xy-zx+x^2+yx-yz-zx+z^2\right]\)
\(=2\left[-xz-xy-yz+x^2+y^2+z^2\right]\)
\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\)
\(=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
(x + y + z)^2 - x^2 - y^2 - z^2 = x^2 + y^2 + z^2 + 2(xy+yz+xz) - x^2 - y^2 - z^2 = 2(xy+yz+xz)