Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{3+a+b+c+}=\frac{9}{6}=\frac{3}{2}\)
cmr với a,b,c lớn hơn 0
a mũ 3/b+b mũ 3/c +c mũ 3/a > hoặc bằng a mũ 2/b+b mũ 2/c+c mũ 2/a
các bạn ơi !có đ hỏi tv k?bởi vì mình đang cần hỏi tv nha các cậu
\(a,x^2< 1=1^2=>x< 1\) thỏa mãn bất phương trình
\(b,2x+5\ge7=>2x\ge7-5=2=>x\ge1\) thỏa mãn bất phương trình
Ta có: \(\left(a-b\right)^2\ge0,\forall ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\left(1\right)\)
Lại có: \(a^2+b^2\ge2ab\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\left(2\right)\)
Từ (1) và (2) suy ra ĐPCM
c)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
Thế : \(\frac{\left(a-b\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{a^4+4a^2b^2+b^4}{a^2b^2}\ge\frac{3\left(a^2+b^2\right)}{ab}\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge\frac{3a}{b}+\frac{3b}{a}\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4>=3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
Mấy câu khác mình đang suy nghĩ nhé