Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này thế biến rồi rút gọn khá tốn thời gian, nhưng mình bảo bạn này, bạn chọn đại 3 giá trị x;y;z khác 0 và khác nhau thỏa mãn \(x+y+z=0\) ví dụ \(x=1;y=2;z=-3\) và thế vô M bấm máy được kết quả bằng 9
Chọn luôn C
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ
sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)
giải
Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:
\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)
\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)
Áp dụng bđt bunhiacopxki ta có:
\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)
Mà \(x,y,z\)nguyên dương
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)
Lấy (1) + (2) ta được:
\(M\ge2+2+2+\frac{1}{3}\)
\(\Rightarrow M\ge\frac{19}{3}\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
2/ \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+zx\)
\(\Leftrightarrow x+y+z-xy-yz-zx+xyz-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)
\(\Rightarrow P=0\)
\(x^2-\sqrt{x+5}=5\)
\(\Leftrightarrow x^2-5=\sqrt{x+5}\)
\(\Leftrightarrow x^4-10x^2+25=x+5\)
\(\Leftrightarrow x^4-10x^2-x+20=0\)
\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))
Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) .
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0
Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)
\(\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{40}=\frac{y}{48}\\\frac{y}{48}=\frac{z}{42}\end{matrix}\right.\)
⇔ \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y+z}{40+48+42}=\frac{138}{130}=\frac{69}{65}\)
⇔ x = \(\frac{552}{13}\)
Vậy không có đáp án nào đúng
Ta có : \(\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{x}{5}.\frac{1}{8}=\frac{y}{6}.\frac{1}{8}=\frac{x}{40}=\frac{y}{48}\\\frac{y}{8}.\frac{1}{6}=\frac{z}{7}.\frac{1}{6}=\frac{y}{48}=\frac{z}{42}\end{matrix}\right.\)
=> \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)
- Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y+z}{40+48+42}=\frac{69}{65}\)
=> \(x=\frac{552}{13}\)
( hình như đá sai sai )