K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

a) Xét ∆ ABM(<A=90°(gt)) và ∆NDM(<N=90°(gt)), ta có:
<BMA=<DMN( đối đỉnh)
BM=DM(gt)
⟹∆ABM=∆NDM(c.h=g.n)
b) Ta có: 
<ABM=<MDN(Vì ∆ABM=∆NDM(CM ở a))
mà <ABM=<CBM(gt)
⟹<MDN=<CBM
⟹∆EBD cân tại E
⟹ BE=DE
c)Áp dụng định lý Py-ta-go vào ∆ABC(<A=90°(gt)), ta có:
   BC2=AB2+AC2
⟹AB2=BC2-AC2=152-122=225-144=81
⟹AB=√81=9cm
mà AB=DN(Vì ∆ABM=∆NDM(CM ở a))
⟹AB=DN=9cm

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

Bài 1: 

Giá trị (x)14151617181920242528 
Tần số (n)2133314111N = 20

 

Bài 2: 

Giá trị (x)ĐỏVàngHồngTrắngTím sẫmTím nhạtXanh da trờiXanh lá câyXanh nước biển 
Tần số(n)654433311N=30
 
28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

31 tháng 10 2017
x 10 -2 -3 1 0 1.21 0.25
\(^{x^2}\) 100 4 9 1 0 1.4641

0.0625

1.44 -25 \(\dfrac{4}{9}\)
2.0736 625 \(\dfrac{16}{81}\)

okhehe

19 tháng 4 2017

(2x3 - 2x + 1) - (3x2 + 4x - 1) = 2x3 - 3x2 - 6x + 2.

Vậy chọn đa thức thứ hai.


6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau


19 tháng 4 2017

18 tháng 4 2017

Hướng dẫn giải:

Trước hết ta thu gọn các đơn thức đồng dạng để xác định mỗi chữ cái tương ứng với kết quả nào trong ô trống của bảng.

V 2x2 + 3x21212 x2 = 9292 x2;

Ư 5xy – 1313 xy + xy = 173173 xy;

N - 1212 x2 + x2 = 1212 x2;

U - 6x2y – 6x2y = -12x2y ;

H xy – 3xy + 5xy = 3xy;

Ê 3xy2 – (-3xy2) = 6 xy2;

Ă 7y2z3 + (-7y2z3) = 0;

L - 1515 x2 + (- 1515 x2) = - 2525 x2;

Vậy tên của tác giả cuốn Đại VIệt sử kí là Lê Văn Hưu.

9 tháng 5 2017

Tác giả là LÊ VĂN HƯU Nhớ tích nha