K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

(Bạn tự làm GTKL nhé)

a, Ta có:

AB ⊥ p (gt)

p // q (gt)   

=> AB ⊥ q ( từ ⊥ đến // )

b, Ta có : C2 + D1 = 180o ( TCP )

=> C2 = 180o - D1

          = 180o - 70o

          = 110o

  Vậy C2 = 110o.

7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)

6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau


15 tháng 9 2017

\(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|=0\)

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|y+\dfrac{2}{3}\right|\ge0\forall y\\\left|x^2+xz\right|\ge0\forall x;z\end{matrix}\right.\) \(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\\\left|y+\dfrac{2}{3}\right|=0\\\left|x^2+xz\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{2}{3}\\z=-\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 11 2017

Với mọi x ta có:

|x - 2001| = |2001 - x|

=> A = |x - 2002| + |2001 - x|

Với mọi x ta cũng có:

|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|

A \(\ge\) |1|

A \(\ge\) 1

Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0

=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)

hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)

Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn

Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002

Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

7 tháng 5 2017

\(x-y=9\Rightarrow x=9+y\Rightarrow y=x-9\)

Ta có:

\(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)

\(=\dfrac{3x+x-9}{3x+y}-\dfrac{3y+y+9}{3y+x}\)

\(=\dfrac{3x+\left(x-9\right)}{3x+y}-\dfrac{3y+\left(y+9\right)}{3y+x}\)

\(=\dfrac{3x+y}{3x+y}-\dfrac{3y+x}{3y+x}\)

\(=1-1\)

\(=0\)

Vậy biểu thức \(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)khi \(x-y=9\) là 0

5 tháng 5 2017

\(x-y=9\Rightarrow y=x-9\) thay vào biểu thức B ta được :

\(B=\dfrac{4x-9}{3x+\left(x-9\right)}-\dfrac{4\left(x-9\right)+9}{3\left(x-9\right)+x}=\dfrac{4x-9}{4x-9}-\dfrac{4x-27}{4x-27}=1-1=0\)

Vậy giá trị của B là 0 tại \(x-y=9\)

11 tháng 5 2017

ta sẽ làm gì với cái này :D

11 tháng 5 2017

bạn làm hôj mjk

\(B=\left[\dfrac{1}{100}-1^2\right]\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right]\cdot...\cdot\left[\dfrac{1}{100}-\left(\dfrac{1}{10}\right)^2\right]\cdot...\cdot\left[\dfrac{1}{100}-\left(\dfrac{1}{120}\right)^2\right]\)

\(=\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{100}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{14400}\right)\)

=0

21 tháng 2 2017

Ta có :

\(S=1.2+2.3+...+49.50\)

\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)

\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)

\(\Leftrightarrow3S=49.50.51\)

\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)

21 tháng 2 2017

S=1 . 2 + 2.3+3.4+.....+49.100

3S=1.2.3+2.3.3+3.4.3+....+49.50.3

3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)

3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51

3S=49.50.51

S=49.50.51 / 3

S=41650