Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(D\left(x;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;1\right)\\\overrightarrow{AD}=\left(x-1;y+1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\\AD=\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\end{matrix}\right.\)
Do ABCD là hình vuông nên:
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{AD}=0\\AB=AD\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)+y+1=0\\\left(x-1\right)^2+\left(y+1\right)^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2+4\left(x-1\right)^2=5\)
\(\Leftrightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}D\left(0;1\right)\\D\left(2;-3\right)\end{matrix}\right.\)
Với \(D\left(0;1\right)\Rightarrow\overrightarrow{DC}=\overrightarrow{AB}\Rightarrow C\left(2;2\right)\)
Cả 4 đáp án đều sai
\(\overrightarrow{KM}=\left(\frac{16}{15};-\frac{8}{15}\right)\)//(2;−1)
a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)
Vì -1/-5<>2/3
nên A,B,C ko thẳng hàng
=>A,B,C là ba đỉnh của 1 tam giác
b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)
\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)
\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)
\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)
=>sinBAC=0,54
\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)
c: ADBC là hình bình hành
=>vecto AD=vecto CB
=>x-3=2-(-2) và y+1=1-2
=>x-3=2+2 và y=-2
=>x=7 và y=-2
Chọn D.
Giả sử tọa độ điểm C là (x; y) ;
và
Ta có :
Tứ giác ABCD hình vuông nên
Giải hệ phương trình trên ta được x = 4; y = -2 hoặc x = 2; y = 2
Từ đó suy ra có 2 điểm C thỏa mãn là C(4; -2) hoặc C( 2; 2)
a: Tọa độ điểm D là:
\(\left\{{}\begin{matrix}x_D=\dfrac{1-1}{2}=0\\y_D=\dfrac{-2+\left(-2\right)}{2}=-2\end{matrix}\right.\)