K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên MH*NP=MN*MP

=>MH*10=6*8=48

=>MH=4,8cm

Xét ΔMNP có MD là phân giác

nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

c: MN*sinP+MP*sinN

=MN*MN/NP+MP*MP/NP

=(MN^2+MP^2)/NP

=NP^2/NP

=NP

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

24 tháng 9 2021

CMR MO vuông góc với EF

5 tháng 11 2021

a: Xét ΔMNP vuông tại M có 

sinˆN=MPPN=45

cosˆN=MNMP=35

tanˆN=MPMN=43

cotˆN=MNMP=34

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

{MH⋅NP=MN⋅MPMN2=HN⋅NP⇔{MH=2.4cmNH=1.8cm

21 tháng 8 2019

M N P K E F 1 1 1

mk chỉ nêu hướng giải còn bn tự trình bày nha

a,Ta có MN=3cm ,MP=4cm

=>NP=5cm

Ta có MN2=NK.NP  (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG )

=>NK=32:5=1,8cm

T2 BN TÍNH ĐC KP

Lại có MK2=NK.KP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG)

=>MK=2,4cm

Lại có MK2=MF.MP

=>MF=1,44cm

 b, bn C/m  MEKF là hcn =>\(\widehat{M_1}=\widehat{E_1}\)

Ta có \(\widehat{M_1}+\widehat{N}=90^O,\widehat{M_1}=\widehat{E_1}\)

=> \(\widehat{E_1}+\widehat{N}=90^O\)

Lại có \(\widehat{E_1}+\widehat{F_1}=90^O\)

\(\Rightarrow\widehat{F_1}=\widehat{N}\)=> \(\Delta EFM\)ĐỒNG DẠNG VS\(\Delta PNM\)(dpcm)

tk mk nha

chúc bn học giỏi

21 tháng 8 2019

mk làm được câu a,b rồi . Mình cần câu c cơ

26 tháng 10 2023

a: Xét ΔMAP vuông tại P có \(tanP=\dfrac{MA}{AP}=\dfrac{7}{4,5}=\dfrac{14}{9}\)

=>\(\widehat{P}\simeq57^0\)

b: Xét ΔMNP vuông tại M có MA là đường cao

nên \(MA^2=AN\cdot AP\)

=>\(AN\cdot4,5=7^2=49\)

=>\(AN=\dfrac{98}{9}\left(cm\right)\)

NP=NA+AP

\(=\dfrac{98}{9}+\dfrac{9}{2}=\dfrac{277}{18}\left(cm\right)\)

Xét ΔMNP vuông tại M có MA là đường cao

nên \(\left\{{}\begin{matrix}MN^2=NA\cdot NP\\MP^2=PA\cdot PN\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}MN=\sqrt{\dfrac{98}{9}\cdot\dfrac{277}{18}}=\dfrac{7\sqrt{277}}{9}\left(cm\right)\\MP=\sqrt{4,5\cdot\dfrac{277}{18}}=\dfrac{\sqrt{277}}{2}\left(cm\right)\end{matrix}\right.\)

27 tháng 11 2023

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=MN^2\)

=>\(NH\cdot3NH=6^2=36\)

=>\(NH^2=12\)

=>\(NH=2\sqrt{3}\left(cm\right)\)

=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)

=>\(MP^2=108-36=72\)

=>\(MP=6\sqrt{2}\left(cm\right)\)