K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

a)Xét ΔABC cân tại A có AE là trung tuyến

 ⇒ AE cũng là đường cao của ΔABC

 ⇒ AE⊥BC \(\Rightarrow\widehat{AEB}=\widehat{AEC}=90^o\)

Xét tứ giác ADBE có \(\widehat{ADB}\) và \(\widehat{AEB}\) cùng nhìn AB dưới góc 90o

 ⇒ ADBE là tứ giác nội tiếp

  ⇒ 4 điểm A,D,B,E cùng thuộc (O)

b) Vì BD⊥AC hay HD⊥AC ⇒ ΔHDC vuông tại D

         ⇒ Tâm của đường tròn đi qua 3 điểm H,D,C là trung điểm của HC

hay I là trung điểm của HC

c) Xét tứ giác HDCE có 2 góc đối \(\widehat{HDC}+\widehat{HEC}=90^o+90^o=180^o\)

    ⇒  HDCE là tứ giác nội tiếp

  ⇒ 2 điểm H,E thuộc (I)

Mà 2 điểm H,E cũng thuộc (O)

 ⇒ Đường tròn tâm O và đường tròn tâm I có 2 điểm chung

a: Ta có: ΔABC cân tại A

mà AE là đường trung tuyến ứng với cạnh đáy BC

nên AE là đường cao ứng với cạnh BC

Xét tứ giác ADEB có 

\(\widehat{ADB}=\widehat{AEB}=90^0\)

Do đó: ADEB là tứ giác nội tiếp

hay A,D,E,B cùng thuộc 1 đường tròn

13 tháng 6 2021

Câu 1

1) ĐKXĐ: \(x\ge0;x\ne9\)

Thay \(x=16\) ( Thỏa mãn điều kiện ) vào biểu thức \(A\) ta được:

\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{16}}{\sqrt{16}+3}=\dfrac{4}{4+3}=\dfrac{4}{7}\)

Vậy \(A=\dfrac{4}{7}\) khi \(x=16\)

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:
a) $MA,MB$ là tiếp tuyến của $(O)$ nên $MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Tứ giác $MAOB$ có tổng 2 góc đối $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) Xét tam giác $MAC$ và $MDA$ có:

$\widehat{M}$ chung

$\widehat{MAC}=\widehat{MDA}$ (tính chất góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

$\Rightarrow \triangle MAC\sim \triangle MDA$ (g.g)

$\Rightarrow \frac{MA}{MD}=\frac{MC}{MA}\Rightarrow MA^2=MC.MD$

c) Dễ thấy $AB\perp MO$ tại $H$.

Xét tam giác $AMO$ vuông tại $A$ có đường cao $AH$, áp dụng định lý hệ thức lượng trong tam giác vuông:

$MA^2=MH.MO$

Kết hợp kết quả phần b suy ra $MH.MO=MC.MD$

$\Rightarrow CHOD$ là tứ giác nội tiếp.

d) Vận dụng giả thiết $AD\parallel MB$ và tính chất góc tạo bởi tiếp tuyến- dây cung ta có:

$\widehat{MCB}=180^0-\widehat{CMB}-\widehat{CBM}$

$=180^0-\widehat{CDA}-\widehat{CDB}$

$=180^0-\widehat{ADB}=\widehat{ACB}$ (do $ACBD$ là tứ giác nội tiếp)

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

** Khuyên chân thành các bạn muốn nâng cao xác suất được hỗ trợ thì nên chịu khó gõ đề bằng công thức toán. Chụp hình như này đọc bài rất nản, đặc biệt là hình xoay ngược đọc mỏi cổ lém.

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

25 tháng 4 2017


dap-an-bai33

Tam giác COA cân: ∠C = ∠A1
Tam giác DO’A cân: ∠D = ∠A2
Mà ∠A1 = ∠A2 (đối đỉnh)
⇒ ∠C = ∠D ⇒ OC//O’D

25 tháng 4 2017

dabai-23

Chiều quay đường tròn tâm A và tâm C cùng chiều kim đồng hồ.

Đường tròn (B) quay ngược chiều với hai đường tròn (A) và (C).