Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối A với C
Xét tam giác ABC có : AB< BC+AC (qh giữa các cạnh trong tam giác)(1)
Xét tam giác ADC có: AC<AD+DC( ---------------------------------------)(2)
Cộng vế 1 và 2 vào ta sẽ có:
AB+AC< BC+AC+AD+CD=> AB+BC< CD +AD
b) Xét tam giác ABC , ta có: AC< AB+BC
Xét tam giác ADC , ta có: AC< AD+DC
=> 2AC< a+b+c+d nên AC<( AB+BC+CD+AD):2 (1)
tương tự như vậy BD<(AB+BC+CD+AD):2 (2)
Từ 1 và 2 suy ra AC+BD<AB+BC+DC+AD
A B C D O
Gọi O là giao điểm hai đường chéo AC và BD
- Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :
\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
- Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :
\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
Câu này dễ mà.Mình học lớp 7 mà mình còn biết nữa đó.Chắc bạn thắc mắc là vì sao mình học lớp 7 mà mình biết bài lớp 8 đúng không.Tại vì mình có thi học sinh giỏi và đạt giải nhì vòng trường lớp 6 luôn đấy,thấy mình giỏi không.