Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
Bài 3:
Gọi x(m) là chiều rộng của mảnh đất(Điều kiện: x>0)
Chiều dài của mảnh đất là: x+5(m)
Theo đề, ta có phương trình:
2x+5=25
\(\Leftrightarrow2x=20\)
hay x=10(thỏa ĐK)
Vậy: Diện tích của mảnh đất là 150m2
73. Tìm các hình thoi trên hình 102.
Bài giải:
Các tứ giác ở hình 39 a, b, c, e là hình thoi.
- Ở hình 102a, ABCD là hình thoi (theo định nghĩa)
- Ở hình 102b, EFGH là hình thoi (theo dấu hiệu nhận biết 4)
- Ở hình 102c, KINM là hình thoi (theo dấu hiệu nhận biết 3)
-Ở hình 102e, ADBC là hình thoi (theo định nghĩa, vì AC = AD = AB = BD = BC)
Tứ giác trên hình 102d không là hình thoi.
Các tứ giác ở hình 39 a, b, c, e là hình thoi.
- Ở hình 102a, ABCD là hình thoi (theo định nghĩa)
- Ở hình 102b, EFGH là hình thoi (theo dấu hiệu nhận biết 4)
- Ở hình 102c, KINM là hình thoi (theo dấu hiệu nhận biết 3)
-Ở hình 102e, ADBC là hình thoi (theo định nghĩa, vì AC = AD = AB = BD = BC)
Tứ giác trên hình 102d không là hình thoi.
Lời giải:
Ta có \(P\) là trung điểm của $AB$, $N$ là trung điểm của $AC$ nên
\(AP=PB,AN=NC\Rightarrow \frac{AP}{PB}=\frac{AN}{NC}\)
Do đó theo định lý Tales suy ra \(PN\parallel BC\), mà \(AH\perp BC\Rightarrow PN\perp AH\) \((1)\)
Xét tam giác vuông tại $H$ là $AHB$ có $P$ là trung điểm của $AB$ nên $PA=PH$ . Tương tự, \(AN=NH\)$(2)$
Từ \((1),(2)\Rightarrow \) $PN$ là đường trung trực của $AH$
b) Do \(HM\parallel PN\Rightarrow HMNP\) là hình thang \((1)\)
Sử dụng tính chất so le trong và đồng vị với các đoạn \(PN\parallel BC, NM\parallel AB\) ta có:
\(\widehat{HPN}=\widehat{PHB}=90^0-\widehat{PHA}=90^0-\widehat{PAH}=\widehat{ABH}=\widehat{ABC}\)
\(\widehat{MNP}=\widehat{NMC}=\widehat{ABC}\)
Do đó \(\widehat{HPN}=\widehat{MNP}\) \((2)\)
Từ \((1),(2)\Rightarrow HMNP\) là hình thang cân.
a | 9 | 35 | 20 | 63 | 28 |
b | 40 | 12 | 21 | 16 | 45 |
c | 41 | 37 | 29 | 65 | 53 |
h | 8 | 18 | 17 | 24 | 13 |
Diện tích 1 đáy | 180 | 210 | 210 | 504 | 630 |
Diện tích xung quanh | 720 | 1512 | 1190 | 3456 | 1638 |
Diện tích toàn phần | 1080 | 1932 | 1610 | 4464 | 2898 |
Thể tích | 1440 | 3780 | 3570 | 12096 | 8190 |
1) -Áp dụng đ/l phân giác ngoài của tam giác là ra, còn nếu đề bắt c/m định lí đó thì mình sẽ c/m.
-CF//AB (F thuộc AE).
-Dễ dàng c/m: \(\widehat{CAF}=\widehat{CFA}\) (cùng bằng \(\widehat{BAE}\))
\(\Rightarrow\)△ACF cân tại C \(\Rightarrow AC=CF\).
-△CEF có: AB//CF \(\Rightarrow\dfrac{BE}{CE}=\dfrac{AB}{CF}=\dfrac{AB}{AC}\)
2) -Ta có: \(\widehat{BAC}\) và \(\widehat{BAx}\) (tia Ax là tia đối của tia AB) là 2 góc kề bù.
\(\Rightarrow\widehat{DAE}=90^0\) (định lí về góc tạo bởi 2 tia p/g của 2 góc kề bù).
\(\Rightarrow\)△ADE vuông tại A.
3) -Giả sử AB>AC.
-△ABC có: AD, AE là p/g trong và ngoài.
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{BE}{CE}=\dfrac{AB}{AC}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\Rightarrow BD=\dfrac{AB.BC}{AB+AC}\\\dfrac{BE}{AB}=\dfrac{CE}{AC}=\dfrac{BE-CE}{AB-AC}=\dfrac{BC}{AB-AC}\Rightarrow BE=\dfrac{AB.BC}{AB-AC}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{BD}+\dfrac{1}{BE}=\dfrac{AB+AC}{AB.BC}+\dfrac{AB-AC}{AB.BC}=\dfrac{2AB}{AB.BC}=\dfrac{2}{BC}\)