Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a}=7\Leftrightarrow\left\{{}\begin{matrix}7>0\\a=7^2\end{matrix}\right.\Leftrightarrow a=49\)
Mei Mei
Cho Q bạn sử dụng BĐT sau: \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)
Để chứng minh thì chỉ cần nhân chéo:
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
BĐT cho R bên dưới tương tự:
\(\left(a+b\right)^2\ge4ab\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\frac{x+\sqrt{x}}{\sqrt{x}-1}=\frac{x+\sqrt{x}-2+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)+2}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}\)
Còn số 4 dưới mẫu thì nhìn giải thích bên trên ấy
Anh Mai
a) ĐKXĐ \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\frac{1-x\sqrt{x}}{1-\sqrt{x}}=\frac{1-\sqrt{x^3}}{1-\sqrt{x}}=\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}=x+\sqrt{x}+1\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}a,b\ge0\\a\ne b\end{matrix}\right.\)
\(\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}+2\sqrt{ab}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}+2\sqrt{ab}=\sqrt{a}-\sqrt{b}+2\sqrt{ab}\)
Bài 1.
\(B=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\div\frac{x}{x-\sqrt{x}}\)với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
a) \(B=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\left(\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\left(\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{x}{x-\sqrt{x}}\)
\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)
\(B=\frac{4\sqrt{x}\cdot\sqrt{x}}{\left(\sqrt{x}+1\right)x}=\frac{4x}{\left(\sqrt{x}+1\right)x}=\frac{4}{\sqrt{x}+1}\)
b) Để B > 1
=> \(\frac{4}{\sqrt{x}+1}>0\)( với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\))
Vì 4 > 0
=> \(\sqrt{x}+1>0\)
<=> \(\sqrt{x}>-1\)( luôn luôn đúng \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)) ( theo ĐKXĐ )
Vậy \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)thì B > 1
Chưa chắc lắm ... Còn câu 2 thì tí nữa mình làm cho
Bài 2.
\(A=2\sqrt{5}-1\)
\(B=\frac{2}{x-1}\cdot\sqrt{\frac{x^2-2x+1}{4x^2}}\)( x > 0 )
a) \(B=\frac{2}{x-1}\cdot\frac{\sqrt{x^2-2x+1}}{\sqrt{4x^2}}\)
\(B=\frac{2}{x-1}\cdot\frac{\sqrt{\left(x-1\right)^2}}{\sqrt{\left(2x\right)^2}}\)
\(B=\frac{2}{x-1}\cdot\frac{\left|x-1\right|}{\left|2x\right|}\)
\(B=\frac{2}{x-1}\cdot\frac{x-1}{2x}=\frac{1}{x}\)( vì x > 0 )
b) Để A + B = 0
=> \(\left(2\sqrt{5}-1\right)+\frac{1}{x}=0\)( ĐKXĐ : \(x\ne0\))
<=> \(\frac{1}{x}=-\left(2\sqrt{5}-1\right)\)
<=> \(\frac{1}{x}=1-2\sqrt{5}\)
<=> \(x\times\left(1-2\sqrt{5}\right)=1\)
<=> \(x=\frac{1}{1-2\sqrt{5}}\)( tmđk )
Vậy \(x=\frac{1}{1-2\sqrt{5}}\)
Lời giải:
ĐK: $x\geq 0$
a)
Khi \(x=\frac{\sqrt{7-4\sqrt{3}}}{2}=\frac{\sqrt{4+3-2\sqrt{4.3}}}{2}=\frac{\sqrt{(2-\sqrt{3})^2}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{(\sqrt{3}-1)^2}{2^2}\)
\(\Rightarrow \sqrt{x}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow \left\{\begin{matrix} 4\sqrt{x}=2(\sqrt{3}-1)\\ (\sqrt{x}+1)^2=\frac{4+2\sqrt{3}}{4}\end{matrix}\right.\) \(\Rightarrow P=-20+12\sqrt{3}\)
b)
\(P=\frac{4\sqrt{x}}{(\sqrt{x}+1)^2}=\frac{1}{2}\)\(\Leftrightarrow 8\sqrt{x}=x+1+2\sqrt{x}\)
\(\Leftrightarrow x-6\sqrt{x}+1=0\)
\(\Leftrightarrow (\sqrt{x}-3)^2=8\Rightarrow \sqrt{x}-3=\pm 2\sqrt{2}\)
\(\Rightarrow \sqrt{x}=3-2\sqrt{2}\Rightarrow x=17\pm 12\sqrt{2}\)
(đều thỏa mãn)
Lời giải:
ĐK: $x\geq 0$
a)
Khi \(x=\frac{\sqrt{7-4\sqrt{3}}}{2}=\frac{\sqrt{4+3-2\sqrt{4.3}}}{2}=\frac{\sqrt{(2-\sqrt{3})^2}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{(\sqrt{3}-1)^2}{2^2}\)
\(\Rightarrow \sqrt{x}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow \left\{\begin{matrix} 4\sqrt{x}=2(\sqrt{3}-1)\\ (\sqrt{x}+1)^2=\frac{4+2\sqrt{3}}{4}\end{matrix}\right.\) \(\Rightarrow P=-20+12\sqrt{3}\)
b)
\(P=\frac{4\sqrt{x}}{(\sqrt{x}+1)^2}=\frac{1}{2}\)\(\Leftrightarrow 8\sqrt{x}=x+1+2\sqrt{x}\)
\(\Leftrightarrow x-6\sqrt{x}+1=0\)
\(\Leftrightarrow (\sqrt{x}-3)^2=8\Rightarrow \sqrt{x}-3=\pm 2\sqrt{2}\)
\(\Rightarrow \sqrt{x}=3-2\sqrt{2}\Rightarrow x=17\pm 12\sqrt{2}\)
(đều thỏa mãn)
Ta có: \(\frac{2\sqrt{a}}{\sqrt{a}+1}>4\Leftrightarrow\frac{2\sqrt{a}}{\sqrt{a}+1}-4>0\Leftrightarrow\frac{2\sqrt{a}-4\sqrt{a}-4}{\sqrt{a}+1}>0\)
\(\Leftrightarrow-2\sqrt{a}-4>0\Leftrightarrow-2\left(\sqrt{a}+2\right)>0\Leftrightarrow\sqrt{a}+2>0\)
\(\Leftrightarrow\sqrt{a}>-2\left(voly\right)\)
e cảm ơn nha <3