K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Sửa đề: AO vuông góc BI

Gọi M là trung điểm của IC

Xét ΔIHC có IO/IH=IM/IC

nên OM//HC và OM=1/2HC

=>OM vuông góc AH

Xet ΔAHM có

MO,HI là đường cao

MO cắt HI tại O

=>O là trực tâm

=>AO vuông góc HM

=>AO vuông góc BI

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

19 tháng 10 2023

a) Xét tứ giác ABCD ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Rightarrow\widehat{D}=360^o-102^o-102^o-102^o\)

\(\Rightarrow\widehat{D}=54^o\) 

b) Xét tam giác vuông AOD ta có:

\(AD^2=OD^2+OA^2\)

\(\Rightarrow OA=\sqrt{AD^2-OD^2}\)

\(\Rightarrow OA=\sqrt{30^2-26,7^2}\approx13,7\left(cm\right)\)

Xét tam giác vuông AOB ta có:

\(AB^2=OA^2+OB^2\)

\(\Rightarrow OB=\sqrt{AB^2-OA^2}\)

\(\Rightarrow OB=\sqrt{17,5^2-13,7^2}\approx10,9\left(cm\right)\)

Độ dài đường chéo BD là:

\(BD=OB+OD=26,7+10,9\approx37,6\left(cm\right)\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Những tam giác đồng dạng là 

- Tam giác ABC đồng dạng với tam giác EDF với tỉ số đồng dạng là 1

- Tam giác MPN đồng dạng với tam giác ABC với tỉ số đồng dạng là \(\frac{1}{2}\)

- Tam giác MPN đồng dạng với tam giác EDF với tỉ số đồng dạng là \(\frac{1}{2}\)

21 tháng 2 2023

Vì MN // BC theo Talet ta có:

\(\dfrac{y}{20}\) =  \(\dfrac{10}{15}\)  = \(\dfrac{x}{12}\) => x = \(\dfrac{10}{15}\) . 12 = 8;   y = \(\dfrac{10}{15}\) . 20 = \(\dfrac{40}{3}\)

 

19 tháng 10 2023

a) 

loading...  Ta có:

∠ABC + ∠CBm = 180⁰ (kề bù)

⇒ ∠ABC = 180⁰ - ∠CBm

= 180⁰ - 70⁰

= 110⁰

Tứ giác ABCD có:

∠A + ∠ABC + ∠C + ∠D = 360⁰ (tổng bốn góc trong tứ giác ABCD)

⇒ 3x + 110⁰ + x + 90⁰ = 360⁰

⇒ 4x + 200⁰ = 360⁰

⇒ 4x = 360⁰ - 200⁰

4x = 160⁰

⇒ x = 160⁰ : 4

⇒ x = 40⁰

b) ∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ AH² = AB² - BH²

= 3,7² - 1,2²

= 12,25

⇒ AH = 3,5

⇒ AH/BH = 3,5/1,2 ≈ 2,9 > 2,2

Vậy thang cách chân tường không "an toàn"

loading... 

1
NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)