Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm A sớm pha hơn B là: \(\frac{2}{3}\pi\)
Điểm M dao động với biên cực đại khi: \(d_2-\left(d_1-\frac{\lambda}{3}\right)=k\lambda\Rightarrow d_2-d_1=k\lambda-\frac{\lambda}{3}\)
Giả sử M lệch phía A, cách trung điểm AB là x thì:\(d_2-d_1=\frac{AB}{2}+x-\left(\frac{AB}{2}-x\right)=2x=k\lambda-\frac{\lambda}{3}\)
\(\Rightarrow x=\frac{k\lambda}{2}-\frac{\lambda}{6}\)
Nhận thấy xmin khi k = 0 \(\Rightarrow x_{min}=-\frac{\lambda}{6}\)
Dấu "-" chứng tỏ x lệch về phía ngược lại mà tả đã giả sử, là phía B.
Điểm M dao động với biên độ cực đại thì: \(MA-\left(MB-\frac{\Delta\varphi}{2\pi}\lambda\right)=k\lambda\)
\(\Rightarrow MA-MB=k\lambda-\frac{\Delta\varphi}{2\pi}\lambda\)
Thay \(\Delta\varphi=-\frac{\pi}{3}\) vào biểu thức trên thì: \(\Rightarrow MA-MB=k\lambda-\frac{\lambda}{6}=\frac{\lambda}{3}\)(giả thiết)
Không tìm đc giá trị nguyên k thỏa mãn PT trên, nên \(\Delta\varphi=-\frac{\pi}{3}\) không thỏa mãn.
bạn ơi đấy là đáp án D trong ABCD
A. -pi/6 b. -2pi/3 c.2pi/3 d. -pi/3
cả A và B đều không thỏa mãn giống D mà
Đáp án: C
Do hai nguồn ngược pha nên những điểm nằm trên đường trung trực của AB sẽ dao động với biên độ nhỏ nhất.
\(u_1=a.\cos\left(wt\right)\)
\(u_2=a.cos\left(wt+\pi\right)\)
Nhận thấy A và B là nguồn ngược pha.
Gọi M là trung điểm của A và B => \(d_1=AM\Rightarrow d_2=BM\)
Biên độ giao động tại M :
\(A_M=\left|2a\cos\left(\frac{\varphi_1-\varphi_2}{2}+\frac{\pi\left(d_2-d_1\right)}{\lambda}\right)\right|\)
\(\Rightarrow A_M=\left|2a\sin\frac{\pi\left(d_1-d_2\right)}{\lambda}\right|\)
Mà d1 = d2
=> AM =0
Điểm B sớm pha hơn A.
Để M dao động với biên cực đại thì: \(\left(d_2-\frac{\lambda}{6}\right)-d_1=k\lambda\Rightarrow d_2-d_1=k\lambda+\frac{\lambda}{6}\)
Kể từ trung trực AB, đường cực đại thứ 1 khi k = 0
Đường thứ 2 khi k = 1
M thuộc đường thứ 3 khi k =2 \(\Rightarrow2\lambda+\frac{\lambda}{6}=24-11=13\Rightarrow\lambda=6cm\)
Vận tốc: \(v=\lambda f=6.50=300\) (cm/s)
@phynit : lần trước bạn có giải thích cho mình giả sử B' cùng pha vs A suy ra B' trễ pha hơn B là pi/3
vậy từ pi/3 ra lamđa/6 kiểu gì bạn?
B sớm pha hơn A nên điểm M dao động với biên độ cực đại thì:
\(\left(d_1-\frac{\lambda}{6}\right)-d_2=k\lambda\Leftrightarrow d_1-d_2=k\lambda+\frac{\lambda}{6}\)(*)
A B M d1 d2
Bước sóng: \(\lambda=2cm\)
M cách A lớn nhât thì d1 phải lớn nhất thỏa mãn (*)
\(d_1-d_2\le10\Rightarrow k\lambda+\frac{\lambda}{6}\le10\Rightarrow k.2+\frac{2}{6}\le10\Rightarrow k\le4,83\)
k nguyên \(\Rightarrow k=4\)
Ta có hệ:
\(\begin{cases}d_1-d_2=4\cdot2+\frac{2}{6}=\frac{25}{3}\\d_1+d_2=10\end{cases}\)
suy ra: \(d_1=\left(\frac{25}{3}+10\right):2=9,17cm\)
Hai nguồn AB dao động ngược pha, cùng tần số \(\Rightarrow \triangle\varphi = \pi \)
Biên độ sóng tại trung điểm của đoạn AB là \( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{0}{\lambda}-\frac{\pi}{2\pi})|=0.\)
đề chuyên SP sai đáp án là chn bt :)))