Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(i=\frac{\lambda D}{a}\Rightarrow\)để vân sáng có màu giống màu vân trung tâm thì
\(i_1=i_2=i_3\Rightarrow k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)
\(\Rightarrow k_1:k_2:k_3=\frac{1}{0,4}:\frac{1}{0,5}:\frac{1}{0,6}=15:12:10\)
\(\Rightarrow\)khoảng cách giữa các vân sáng có màu giống vân trung tâm là:
\(i=k_1\frac{\lambda_1D}{a}=k_2\frac{\lambda_2D}{a}=k_3\frac{\lambda_3D}{a}=12mm\)
Vậy trong khoảng \(\text{MN=6cm=60mm }\) có
\(\frac{60}{12}=5\)vân sáng (tính cả M và N) cùng màu vân trung tâm.
Tại vân trung tâm là vân sáng của bước sóng 1 trùng vân sáng của bước sóng 2. Vậy các vân sáng có màu giống vân trung tâm là nơi trùng nhau của vân sáng của bước sóng 1 và vân sáng của bước sóng 2. Vậy ta đi tìm số vị trí trùng nhau.
Ta có: $\frac{{{\lambda _1}}}{{{\lambda _2}}} = \frac{{{k_2}}}{{{k_1}}} = \frac{3}{2}$
$\Rightarrow {k_1} = 2n$
Các vị trí vân sáng của bước sóng 1 và 2 trùng nhau có tọa độ $x = {k_1}\frac{{{\lambda _1}D}}{a}$ (dùng ${k_2}$ cũng được)
Vì $x \le \frac{L}{2}\Leftrightarrow {k_1}\frac{{{\lambda _1}D}}{a} \le \frac{L}{2}$
$\Leftrightarrow 2n\frac{{{\lambda _1}D}}{a} \le \frac{L}{2}$ (với $n$ là số nguyên dương)
$\Leftrightarrow n = 2$
=>có $2n+1=5$ vị trí trùng nhau.
Đáp số : 5
Đáp án A
Phương pháp: Công thức tính số vân sáng trên bề rộng miền giao thoa L:
Cách giải:
+ Khoảng vân Số vân sáng của bức xạ λ1 là:
Khoảng vân Số vân sáng của bức xạ λ2 là:
Vị trí vân sáng của hai bức xạ λ1 và λ2 trùng nhau thoả mãn:
=> Khoảng vân trùng:
=> Số vân sáng trùng nhau của hai bức xạ là:
Vậy số vạch màu quan sát được trên vùng giao thoa: N = N1 + N2 – NT = 31+21 – 11 = 41 vạch
Khoảng cách giữa 7 vân sáng liên tiếp là
\((7-1)i = 2,4mm=> i = 0,4mm.\)
\(\lambda = \frac{ia}{D}=\frac{0,4.2}{1,2}=0,67\mu m. \)
Ta có:
\(i=\frac{\lambda D}{a}\)
\(i^{'}=i+0,15\Rightarrow 0,15.10^{-3}=i'-i=\frac{\lambda (D^{'}-D)}{a}\)
Bước sóng: \(\lambda =\frac{a.0,15.10^{-3}}{D{'}-D}=\frac{2.10^{-3}.15.10^{-5}}{0,4}=0,75\mu m\)
Lưu ý: \(\Delta i=\dfrac{\lambda.\Delta D}{a}\)
D. 0,75μm