K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A

12 tháng 3 2023

giao điểm của 3 đường phân giác trong của một tam giác

A,cách đều 3 cạnh của tam giác đó

B,là điểm luôn thuộc một cạch của tam giác đó

C,cách đều 3 đỉnh của tam giác đó

D,là trọng tâm của tam giác đó

Chọn A

7 tháng 4 2017

A B C D E F H 1 2 1 2 1 2

Bạn biết rằng đường trung tuyến của tam giác đều cũng là đường phân giác của tam giác

Mà <A = <B = <C ( dấu góc đó nhe bạn, mình k bik bấm dấu góc ở đâu hết :) )

=> <A / 2 = <B / 2 = <C / 2

=> <A1 = <A2 = <B1 = <B2 = <C1 = <C2

Xét tam giác AHC có: <A1 = <C1 => tam giác AHC là tam giác cân tại H => AH = HC (1)

Xét tam giác HCB có: <C1 = <B2 => tam giác BHC là tam giác cân tại H => HC = HB (2)

Xét tam giác BHA có: <B2 = <A2 => tam giác BHA là tam giác cân tại H => HB = HA (3)

Từ (1), (2), (3) => HA = HB = HC => điều phải chứng minh

12 tháng 7 2020

B A C D M N I 1 2 H

a) XÉT \(\Delta BAD\)VÀ \(\Delta MAD\)

 \(\widehat{ABD}=\widehat{AMD}=90^o\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AD LÀ CẠNH CHUNG 

=>\(\Delta BAD\)=\(\Delta MAD\)( CH-GN)

B) VÌ \(\Delta BAD\)=\(\Delta MAD\)(CMT)

  \(\Rightarrow BA=MA\)HAI CẠNH TƯƠNG ỨNG

\(\Rightarrow\Delta ABM\) CÂN TẠI A 

MÀ  \(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

=> AI LÀ PHÂN GIÁC CỦA \(\widehat{BAM}\)

MÀ TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG TRUNG TRỰC 

=> AI LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM 

MÀ I NẰM TRÊN ĐỌAN AD

=> AD LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM 

C) 

chứng minh DH=DB=DM 

sao đó là mà D là điểm nằm trog tam giác acn 

=> d cách đều các cạnh tam giác acn

29 tháng 4 2015

trong tam giac MNP co diem O cach deu 3 dinh tam giac khi do O la giao diem cua 3 duong trung tuyen

 

19 tháng 9 2023

Vì \(\Delta ABC\) đều nên AB = AC = BC (tính chất tam giác đều)

Vì I là điểm cách đều 3 cạnh của tam giác nên là giao điểm của 3 đường phân giác của tam giác ABC

Áp dụng ví dụ 2, ta được, AI là đường trung tuyến của \(\Delta ABC\)

Tương tự, ta cũng được BI, CI là đường trung tuyến của \(\Delta ABC\)

Vậy I là giao điểm của ba đường đường trung tuyến của \(\Delta ABC\) nên I là trọng tâm của \(\Delta ABC\).

Chú ý:

Với tam giác đều, giao điểm của 3 đường trung tuyến cũng là giao điểm của 3 đường phân giác.