Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hoàn chỉnh lại bài làm trên trang diễn đàn toán học:
\(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16\)
Điều kiện xác định: \(-1\le x\le1\).
Ta có:
\(\left(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}\right)^2\)
\(=\left(13\left|x\right|\sqrt{1-x^2}+9\left|x\right|\sqrt{1+x^2}\right)^2\)
\(=x^2\left(\sqrt{13}\sqrt{13}\sqrt{1-x^2}+3\sqrt{3}\sqrt{3}\sqrt{1+x^2}\right)^2\) (*)
Áp dụng bất đẳng thức Bu-nhi-a cho \(\sqrt{13}.\sqrt{13}.\sqrt{1-x^2}+3\sqrt{3}.\sqrt{3}.\sqrt{1+x^2}\) ta có:
(*) \(x^2\left(13+27\right)\left(13-13x^2+3+3x^2\right)=40x^2\left(16-10x^2\right)\)
\(=4.10x^2\left(16-10x^2\right)\le4.\left(\dfrac{10x^2+16-10x^2}{2}\right)^2=16\).
Vì vậy \(VT\le VP\) . Dấu bằng xảy ra khi:
\(10x^2=16-10x^2\Leftrightarrow x^2=\dfrac{4}{5}\)\(\Leftrightarrow x=\pm\dfrac{2\sqrt{5}}{5}\).
\(1.\)
\(x+6\sqrt{x}+8\\ =\sqrt{x}^2+2\sqrt{x}.3+9-1\\ =\left(\sqrt{x}+3\right)^2-1\\ =\left(\sqrt{x}+2\right)\left(\sqrt{x}+4\right)\)
\(2.\)
\(x-2\sqrt{x}-3\\ =\sqrt{x}^2-2\sqrt{x}+1-4\\ =\left(\sqrt{x}-1\right)^2-2^2\\ =\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
\(4.\)
\(x^2-2\sqrt{2}x+2\\ =\left(x-\sqrt{2}\right)^2\)
\(5.\)
\(x^2+2\sqrt{13}x+13=\left(x+\sqrt{13}\right)^2\)
\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
\(\Leftrightarrow\dfrac{\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)
\(\Leftrightarrow\dfrac{16-2x+x^2-9+2x-x^2}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)
\(\Leftrightarrow\dfrac{7}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\Leftrightarrow\dfrac{7}{A}=1\Rightarrow A=7\)
ĐK: \(1\ge x\ge0\)
pt\(\Leftrightarrow\left(13\sqrt{x-x^2}-\frac{26}{5}\right)+\left(9\sqrt{x+x^2}-\frac{54}{5}\right)=0\)
\(\Leftrightarrow13\frac{\left(\sqrt{x-x^2}-\frac{2}{5}\right)\left(\sqrt{x-x^2}+\frac{2}{5}\right)}{\sqrt{x-x^2}+\frac{2}{5}}+9\frac{\left(\sqrt{x+x^2}-\frac{6}{5}\right)\left(\sqrt{x+x^2}+\frac{6}{5}\right)}{\sqrt{x+x^2}+\frac{6}{5}}=0\)
\(\Leftrightarrow13\frac{x-x^2-\frac{4}{25}}{\sqrt{x-x^2}+\frac{2}{5}}+9\frac{x+x^2-\frac{36}{25}}{\sqrt{x+x^2}+\frac{6}{5}}=0\)
\(\Leftrightarrow13\frac{\left(\frac{1}{5}-x\right)\left(x-\frac{4}{5}\right)}{\sqrt{x-x^2}+\frac{2}{5}}+9\frac{\left(x-\frac{4}{5}\right)\left(x+\frac{9}{5}\right)}{\sqrt{x+x^2}+\frac{6}{5}}=0\)
\(\Leftrightarrow\left(x-\frac{4}{5}\right)\left(....\right)=0\)
TH1: \(x=\frac{4}{5}\left(TMĐK\right)\)
TH2:\(\left(....\right)=0\Leftrightarrow x=\frac{4}{5}\)(bạn tự giải nhé, mik đuối sức r)\(\left(tmđk\right)\)
Vậy...
um, bạn Ác quỷ gì đó ơi, cho mình hỏi sao chỗ đk có nhỏ hơn hoặc 1 vậy? bạn giải thích giùm mình với, chứ không phải là căn thì lớn hơn hoặc bằng 0 là được rồi hay sao?