K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

+ Trường hợp 1:

Nếu \(x\ge2\)phương trình đã cho trở thành: \(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)

\(\Leftrightarrow x^4-5x^2=0\)

\(\Leftrightarrow x^2\left(x^2-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\left(l\right)\\x=\sqrt{5}\left(tm\right)\\x=-\sqrt{5}\end{cases}}\)(Dấu ngặc vuông nha)

+ Trường hợp 2:

Nếu \(x< 2:\)phương trình đã cho trở nhành:\(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)

\(\Leftrightarrow x^4-5x^2+8=0\left(vn\right)\)

Vậy phương trình có nghiệm là \(x=\sqrt{5}\)

28 tháng 1 2020

\(\left|x-2\right|\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=4\)

\(\Leftrightarrow x^4-4x^2-x^2+4=4\)

\(\Leftrightarrow x^4-5x^2=0\)

\(\Leftrightarrow x^2\left(x^2-5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}\)

Chỉ thấy \(\sqrt{5}>\sqrt{4}=2\)nên \(\sqrt{5}\)là 1 nghiệm của pt đang xét.

+) Xét \(x< 2\)

\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=-4\)

\(\Leftrightarrow x^4-4x^2-x^2+4=-4\)

\(\Leftrightarrow x^4-5x^2+8=0\)(1)

Đặt \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-5t+8=0\)(2)

Mà \(t^2-5t+8=\left(t-\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\) (2) không xảy ra

Lúc đó pt đang xét vô nghiệm.

Vậy \(S=\left\{\sqrt{5}\right\}\)

6 tháng 5 2016

a)x-4/6+1/2>2x-5/3

=x-4+3>4x-10

<=>-3x>9

<=>x<-3

6 tháng 5 2016

câu b

-x>-2/3 =>x<2/3

de ot ak

5 tháng 6 2020

\(\frac{1-2x}{4}-2\ge\frac{1-x}{8}\)

\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}\ge\frac{1-x}{8}\)

\(\Leftrightarrow2\left(1-2x\right)-16\ge1-x\)

\(\Leftrightarrow2-4x-16\ge1-x\)

\(\Leftrightarrow x-4x\ge16+1-2\)

\(\Leftrightarrow-3x\ge15\)

\(\Leftrightarrow x\le-5\)

Vậy tập nghiệm của bất phương trình trên là:\(S=\left\{x|x\le-5\right\}\)

 #hoktot<3# 

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

27 tháng 4 2019

x + x - 1/2 > x - 2/3 

<=> 2x - 1/2 > x - 2/3 

<=> x > -1/6 

x/3 + 3x - 4/5 >= 2x - 3

<=> 4x/3 >= -11/5

<=> 4x >= -33/5

<=> x >= -33/20 

Tập nghiệm chung của 2 bất phương trình là : x >-1/6

30 tháng 12 2016

Bài này nếu làm ra hết thì hơi dài nên chỉ hướng dẫn b thôi nhé.

Bạn chia thành các khoản x<-2;1>x>=-2; x>=1. Rồi bỏ dấu giá trị tuyệt đối giải từ từ

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

NV
6 tháng 4 2021

Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?