K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Phân tích vế trái bằng \(\left(x-2006\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2006\right)\left(x+1\right)=0\Rightarrow x_1;x_2=2006\)

c, Xét phương trình với 4 khoảng sau : 

\(x< 2;2\le x< 3;3\le x< 4;x\ge4\)

Rồi suy ra nghiệm của phương trình là : \(x=1;x=5,5\)

18 tháng 8 2019

a.\(x^2-2005x-2006=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2006\end{cases}}\)

b.Ta co:\(|x-2|+|x+3|+|2x-8|\ge|2x+1|+|8-2x|\ge9|\)

Dau '=' xay ra khi \(2\le x\le4\)

8 tháng 2 2018

\(\text{a) }x^2-2005x-2006=0\\ \Leftrightarrow x^2-2006x+x-2006=0\\ \Leftrightarrow\left(x^2-2006x\right)+\left(x-2006\right)=0\\ \Leftrightarrow x\left(x-2006\right)+\left(x-2006\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2006=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2006\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-1;2016\right\}\)

\(\text{b) }\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\)

Lập bảng xét dấu:

x x-2 x-3 2x-8 2 3 4 0 0 0 _ _ _ + + + _ _ + + + _

+) Xét \(x< 2\Leftrightarrow\left(2-x\right)+\left(3-x\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow2-x+3-x+8-2x=9\\ \Leftrightarrow13-4x=9\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\left(TM\right)\)

+) Xét \(2\le x< 3\Leftrightarrow\left(x-2\right)+\left(3-x\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow x-2+3-x+8-2x=9\\ \Leftrightarrow9-2x=9\\ \Leftrightarrow2x=0\\ \Leftrightarrow x=0\left(KTM\right)\)

+) Xét \(3\le x< 4\Leftrightarrow\left(x-2\right)+\left(x-3\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow x-2+x-3+8-2x=9\\ \Leftrightarrow3=9\left(\text{ Vô lí }\right)\)

+) Xét \(x\ge4\Leftrightarrow\left(x-2\right)+\left(x-3\right)+\left(2x-8\right)=9\)

\(\Leftrightarrow x-2+x-3+2x-8=9\\ \Leftrightarrow4x-11=9\\ \Leftrightarrow4x=20\\ \Leftrightarrow x=5\left(TM\right)\)

Vậy tập nghiệm phương trình là \(S=\left\{5;1\right\}\)

7 tháng 10 2017

câu b.

|x-2| +|x-3| +|2x-8|

x<2 =>x-2+x-3+2x-8=-9=> 4x=4=> x=1 nhận

2<=x<3 <=>x-2+3-x+8-2x=9=>2x=0=>x=0 loại

3<=x<4<=>x-2+x-3+8-2x =9=> 3=9 loại

x>=4 <=>x-2+x-3+2x-8=9=> 4x=22=> x=11/2nhận

5 tháng 11 2019

\(a,x^2-2005x-2006=0\)

\(\Leftrightarrow x^2+x-2006x-2006=0\)

\(\Leftrightarrow x\cdot\left(x+1\right)-2006\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2006=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2006\end{cases}}}\)

5 tháng 11 2019

a) \(x^2-2005x-2006=0\)

Ta có: \(2005^2+4.2006=4028049\)

pt có 2 nghiệm:

\(x_1=\frac{2005+\sqrt{4028049}}{2}\);\(x_2=\frac{2005-\sqrt{4028049}}{2}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{2005+\sqrt{4028049}}{2};\frac{2005-\sqrt{4028049}}{2}\right\}\)

29 tháng 9 2019

\(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Vậy \(S=\left\{3;-2\right\}\)

Chúc bạn học tốt !!!

29 tháng 9 2019

\(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

\(\Leftrightarrow\frac{x^2+2x-3x-6}{x-3}=0\)

\(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

<=> x + 2 = 0

=> x = -2

3 tháng 2 2021

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

3 tháng 2 2021

2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)

Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy x = -2 hoặc x = -4

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)