Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
Ta có
\(4y^2=\left(2x^2+x\right)^2+3x^2+4x+1\)
Lại có\(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+1\right)\)
\(\Rightarrow\hept{\begin{cases}4y^2-\left(2x^2+x\right)^2>0\\\left(2x^2+x+1\right)^2-4y^2>0\end{cases}}\)
Giải ra là tìm được x,y
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Điều kiện xác định \(x\ge4,y\ge4\)
\(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)\)
\(\Leftrightarrow\frac{\sqrt{x-4}}{x}+\frac{\sqrt{y-4}}{y}=\frac{1}{2}\)
Ap dụng bất đẳng thức AM-GM ta có
\(\frac{\sqrt{x-4}}{x}+\frac{\sqrt{4\left(x-4\right)}}{x}\le\frac{4+\left(x-4\right)}{2\cdot2x}=\frac{1}{4}\)
\(\frac{\sqrt{y-4}}{y}+\frac{\sqrt{4\left(y-4\right)}}{y}\le\frac{4+\left(y-4\right)}{2\cdot2y}=\frac{1}{4}\)
\(\Rightarrow\frac{\sqrt{x-4}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=8\)
\(4y^2=4x^4+4x^3+4x^2+4x+4\)
Ta có:
\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x\right)^2+\left(3x^2+4x+4\right)>\left(2x^2+x\right)^2\)
\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2-5x^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}\left(2y\right)^2=\left(2x^2+x+1\right)^2\\\left(2y\right)^2=\left(2x^2+x+2\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\5x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=3\end{matrix}\right.\)
- Với \(x=-1\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=3\Rightarrow y^2=121\Rightarrow y=\pm11\)