Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu
5xyz=24(x+y)(1) |
7xyz=24(y+z)(2) |
xyz=4(x+z) => 2xyz= 8(x+z) (3) Trừ vế theo vế (1),(1),(3) ta được: 7xyz - 5xyz - 2xyz = 24(y+z) - 24(x+y) - 8(x+z) 0 = 16z - 32x => 0 = z - 2x => z=2x Thay z=2x vào (3) ta đươc: 4x^2y = 24x =>xy=6 Thay xy=6; z=2x vào (1) ta được: 5xyz = 24(x+y) <=> 30z= 12z + 24y <=>3z=4y Mà z=2x => 4y=6x <=> 2y=3x Thay 2y=3x vào xy=6 ta được xy=6=> 2xy= 12 <=> 3x^2=12 => x^2=4 => x=(2;-2) +) Với x=2 => y= 3, z= 4 +) Với x=-2 => y= -3, z= -4 Vậy x,y,z= (2,3,4): (-2,-3,-4) |
Xét với \(0< x,y,z< 1\) thì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}>1\) (vô lí)
Xét \(x,y,z\ge1\) , đặt \(\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\) (\(a,b,c\ge1\))
Ta có \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{1}{a^3+1}+\frac{1}{b^3+1}+\frac{1}{c^3+1}\ge\frac{3}{abc+1}\) (cái này chắc you cm đc)
\(\Rightarrow abc\ge2\Rightarrow a^3.b^3.c^3\ge8\) hay \(xyz\ge8\) (1)
Áp dụng BĐT AM-GM : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}\Rightarrow x+y+z\ge6\) (2)
Áp dụng BĐT Cauchy : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{3}{\sqrt[3]{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge27\) (3)
Nhân (1), (2), (3) theo vế : \(xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge1296\)
Đẳng thức xảy ra khi xảy ra đồng thời (1), (2), (3) , tức là x = y = z = 2
Vậy tập nghiệm của hệ : \(\left(x,y,z\right)=\left(2;2;2\right)\)