Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}
b) Đk xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)
Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}
c) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}
d) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy S={(0,4;-4)}
e) ĐKXĐ : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....
ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{xz+yz+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^8=\left(-y\right)^8\\y^9=\left(-z\right)^9\\z^{10}=\left(-x\right)^{10}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^8-y^8=0\\y^9+z^9=0\\x^{10}-z^{10}=0\end{matrix}\right.\)\(\Rightarrow\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)=0\)
\(\Rightarrow M=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}-\dfrac{5y+10-10}{y+2}=9\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-1}+1-5+\dfrac{10}{y+2}=9\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{10}{y+2}=9+5-1=14-1=13\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>x-1=2/7; y+2=5/3
=>x=9/7; y=-1/3
Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Ta có: x8 - y8 = (x + y)(x - y)(x2 + y2)(x4 + y4)
y9 + z9 = (y + z)(y8 - y7z + y6z2 - ... + z8)
z10 - x10 = (z + x)(z4 - z3x + z2x2 - zx3 + z4)(z5 - x5)
Vậy M = \(\dfrac{3}{4}\) + (x + y)(y + z)(z + x) = \(\dfrac{3}{4}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\\ \Leftrightarrow\dfrac{x+y}{xy}+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\\ \Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\\ \Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}\right)=0\\ \)
Nếu x+y=0 => x=-y
Nếu
\(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}=0\\ \Rightarrow xz+yz+z^2+xy=0\\ \Rightarrow\left(x+z\right)\left(y+z\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-z\\y=-z\end{matrix}\right.\)
Tự thế vào :v
Đặt \(\left\{{}\begin{matrix}\sqrt{x+\dfrac{1}{y}}=a\left(a\ge0\right)\\x+y=b\left(b\ge3\right)\end{matrix}\right.\), ta có hpt:
\(\left\{{}\begin{matrix}a+\sqrt{b-3}=3\left(1\right)\\a^2+b=8\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{b-3}=3-a\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-a\ge0\\b-3=9-6a+a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le a\le3\\b=a^2-6a+12\left(3\right)\end{matrix}\right.\). Thay (3) vào (2)
\(\Rightarrow a^2+a^2-6a+12=8\)
\(\Leftrightarrow2\left(a-1\right)\left(a-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\left(n\right)\)
TH1: \(a=1;b=7\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+\dfrac{1}{y}}=1\left(4\right)\\x+y=7\end{matrix}\right.\). Thay \(x=7-y\) vào (4)
\(\Rightarrow7-y+\dfrac{1}{y}=1\)
\(\Leftrightarrow7y-y^2+1=y\)
\(\Leftrightarrow\left(y-3\right)^2-10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{10}\\y=3-\sqrt{10}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4-\sqrt{10}\\x=4+\sqrt{10}\end{matrix}\right.\)
TH2: \(a=2;b=4\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+\dfrac{1}{y}}=2\left(5\right)\\x+y=4\end{matrix}\right.\). Thay \(x=4-y\) vào (5)
\(\Rightarrow4-y+\dfrac{1}{y}=4\)
\(\Leftrightarrow4y-y^2+1=4y\)
\(\Leftrightarrow\left(1-y\right)\left(1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
Vậy . . .
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\Rightarrow\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)TH1: Nếu x=-y⇒x8-y8=x8-(-x)8=0 (Vì x8 và (-x)8 đều là số nguyên dương)⇒M=\(\text{}\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9-z^9\right)\left(z^{10}-x^{10}\right)=\dfrac{3}{4}\)
Tương tự với y=-z và z=-x
Vậy M=\(\dfrac{3}{4}\)
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=500\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\\dfrac{8}{10}\left(500-y\right)+\dfrac{9}{10}y=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\400+\dfrac{y}{10}=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y=300\\y=200\end{matrix}\right.\)
Vậy (x,y)=(300,200)
hpt <=> \(\left\{{}\begin{matrix}\dfrac{8}{10}x+\dfrac{8}{10}y=400\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x+y=500\\\dfrac{1}{10}y=20\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x+y=500\\y=200\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=300\\y=200\end{matrix}\right.\)