Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18, P = 50 - (2022 + 50 - 118) + (2022 - 18)
P = 50 - 2022 - 50 + 118 + 2022 - 18
P = (50 - 50) - (2022 - 2022) + (118 - 18)
P = 0 - 0 + 100
P = 0
19, Q = 1 - 3 + 5 - 7 + ... + 2021 - 2023 + 2025
Xét dãy số 1; 3; 5; 7;..; 2021; 2025, đây là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: (2025 - 1) : 2 + 1 = 1013
1013 : 2 = 506 dư 1
Vậy Q có 1013 hạng tử nhóm 2 hạng tử liên tiếp của A thành một nhóm ta được:
Q = ( 1 - 3) + ( 5 - 7) + (9 - 11) +...+ (2021 - 3) + 2025
Q = - 2 + (-2) +...+ (-2) + 2025
Q = - 2.506 + 2025
Q = - 1012 + 2025
Q = 1013
2020/2021<1
2021/2022<1
2022/2023<1
2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023
=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4
A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
1-2+3-4+...+2021-2022+2023
=(1-2)+(3-4)+...+(2021-2022)+2023
=(-1)+(-1)+(-1)+...+(-1)+2023
=(-1011)+2023
=1012
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
Đặt S = B + 2022 + 2023
Số số hạng của B là : ( 2021 - 1 ) : 4 + 1 = 506 ( số )
Tổng B là : ( 2021 + 1 ) . 506 : 2 = 511566
=> S = 511566 + 2022 + 2023
=> S = 515611
Vậy,......
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
\(\left(-7+86,17:12,31\right)\left(\dfrac{2023}{2021}-\dfrac{1}{2022}\right)\)
\(=\left(-7+7\right)\cdot\left(\dfrac{2023}{2021}-\dfrac{1}{2022}\right)\)
=0