K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

thanks

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

5 tháng 5 2017

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

5 tháng 5 2017

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

25 tháng 2 2016

\(x^2-\left(3m-2\right)x+2m\left(m-2\right)<0\) (1)

Tam thức bậc hai ở (1) luôn có hai nghiệm \(x_1=2m\)

và \(x_2=m-2\) với mọi \(m\in R\) Từ đó ta có 

- Khi 2m<m-2 hay m<-2 thì (1) có nghiệm 2m<x<m-2

- Khi 2m=m-2 hay m=-2 thì (1) vô nghiệm 

- Khi 2m>m-2 hay m>-2 thì (1) có nghiệm m-2<x<2m

2 tháng 3 2016

phương trình  \(\Leftrightarrow\)    \(\left(m^2+1\right)x=-2m\)          \(\Leftrightarrow\)         \(x=-\frac{2m}{m^2+1}\)

đây là nghiệm duy nhất cần tìm 

NV
17 tháng 9 2019

Phương trình có dạng: \(\left(x-4\right)\left|x-2\right|=-m\)

Vẽ đồ thị hàm số \(y=\left(x-4\right)\left(x-2\right)=x^2-6x+8\) với phần \(x< 2\) lấy đối xứng qua trục hoành sẽ được đồ thị \(y=\left(x-4\right)\left|x-2\right|\)

Phác thảo như sau:

Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Nhìn vào đồ thị, ta biện luận được:

- Nếu \(-m< -1\Rightarrow m>1\) phương trình có 1 nghiệm duy nhất

- Nếu \(\left[{}\begin{matrix}-m=-1\\-m=0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt có 2 nghiệm

- Nếu \(-1< -m< 0\) hay \(0< m< 1\) thì pt có 3 nghiệm pb