Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)
Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
\(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)
Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x
Nếu \(a\ne b\)thì phương trình có nghiệm
\(\frac{2}{b-x}-\frac{1}{c-x}=0\)
\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)
\(\Rightarrow2c-2x-b+x=0\)
\(\Leftrightarrow-x=b-2c\)
\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)
Vậy ..............................................................................................
\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(\Leftrightarrow\)\(\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}\ge\frac{15\left(3x+2\right)}{30}\)
\(\Leftrightarrow\)12x + 30 - 20x \(\ge\) 45x + 30
\(\Leftrightarrow\) 12x - 20x - 45x \(\ge\) -30 + 30
\(\Leftrightarrow\)- 53x \(\ge\)0
\(\Leftrightarrow\)x \(\le\)0
Vậy bất phương trình có nghiệm là : x \(\le0\)
b) \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\Leftrightarrow\)\(\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\) 12 - 4x + 10 > 9 - 3x
\(\Leftrightarrow\)-4x + 3x > -12 - 10 + 9
\(\Leftrightarrow\)-x > -13
\(\Leftrightarrow\)x < 13
Vậy bất phương trình có nghiệm là : x < 13
\(\frac{2x+a}{a-2}-\frac{a-2x}{a+2}=\frac{6a}{a^2-4}\)
\(\text{ĐKXĐ}:\hept{\begin{cases}a-2\ne0\\a+2\ne0\Leftrightarrow a\ne\pm2\\a^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\left(2x+a\right)\left(a+2\right)-\left(a-2x\right)\left(a-2\right)=6a\)
\(\Leftrightarrow2ax+4x+a^2+2a-a^2+2a+2ax-4x=6a\)
\(\Leftrightarrow4ax+4a=6a\)
\(\Leftrightarrow4ax=2a\)
TH1 : \(a\ne0\). \(4ax=2a\Leftrightarrow\frac{2a}{4a}=\frac{1}{2}\)
TH2 : \(a=0\). \(4ax=2a\Leftrightarrow0.x=0\)=> PT nghiệm đúng với mọi x
Kết luận :