K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(m^2(x-1)=mx-1\)

\(\Leftrightarrow m^2x-m^2=mx-1\)

\(\Leftrightarrow x(m^2-m)=m^2-1\)

\(\Leftrightarrow xm(m-1)=(m-1)(m+1)\)

+) Nếu $m=1$ thì $x.0=0$: PT có vô số nghiệm \(x\in\mathbb{R}\)

+) Nếu $m=0$ thì $x.0=-1$: PT vô nghiệm

+) Nếu $m\neq 1; m\neq 0$ thì PT có nghiệm duy nhất \(x=\frac{(m-1)(m+1)}{m(m-1)}=\frac{m+1}{m}\)

\(\Leftrightarrow-m^2+m+2mx-2=x^2-1\)

\(\Leftrightarrow x^2-1+m^2-m-2mx+2=0\)

\(\Leftrightarrow x^2-2mx+m^2-m+1=0\)

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m-4

Để phương trình có hai nghiệm phân biệt thì 4m-4>0

hay m>1
Để phương trình có nghiệm kép thì 4m-4=0

hay m=1

Để phương trình vô nghiệm thì 4m-4<0

hay m<1

3 tháng 8 2016

+/ neu a khác 0 thi phuong trình có một nghiệm duy nhất x=-b/a 
+/ nếu a=0 va b khác 0 thi phương trình vô nghiệm 
a=0 va b=0 thi phuong trình có vô sô nghiệm 
VD: giai và biẹn luận phuong trình m^2(x-1)+m=x(3m-2) (1) (với m la tham số và x là ẩn) 
ta có phuong trinh(1) <=> m^2x-m^2+m-3mx+2x=0 
<=> x(m^2-3m+2)-m^2+m=0 (2) 
Nếu m^2-3m+2 khác 0 <=> m khác 2 và m khác 1=> phuong trình co nghiệm duy nhất 
x=m-m^2/m^2-3m+2 <=> x=m/m-2 
Nếu m^2-3m+2=0 <=> m=2 hoăcm=1 
vói m=2 thi phuong trình (2) trở thành 0x-2=0 => phương trình dã cho vô nghiệm 
với m=1 thi phwơng trình (2) trở thành 0x =0 => phương trình da cho có vô số nghiệm 

14 tháng 1 2016

điên à

 

18 tháng 1 2019

  m x   -   m 2   >   2 x   -   4   ⇔ (m - 2)x > (m - 2)(m + 2)

    Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;

    Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;

    Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.