K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0

<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)

(1)

Xét m = 0 thì pt có nghiệm duy nhất là x = 2

Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2

(2)

Xét m = 1/2 thì pt vô nghiệm.

Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)

Câu b thì bn viết ko rõ đề lắm nên k giải.

 

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

a: \(\Leftrightarrow mx-m^2+3m=mx-2m+6\)

\(\Leftrightarrow-m^2+5m-6=0\)

\(\Leftrightarrow\left(m-2\right)\left(m-3\right)=0\)

=>m=2 hoặc ,=3

b: Để phương trình là phương trình bậc hai một ẩn thì m+1<>0

hay m<>-1

\(\text{Δ}=\left(2m-2\right)^2-4\left(m+1\right)\left(m-2\right)\)

\(=4m^2-8m+4-4\left(m^2-m-2\right)\)

\(=4m^2-8m+4-4m^2+4m+8\)

=-4m+12

Để phương trình có hai nghiệm phân biệt thì -4m+12>0

=>-4m>-12

hay m<3

Để phương trình có nghiệm kép thì -4m+12=0

hay m=3

Để phương trình vô nghiệm thì -4m+12<0

hay m>3

14 tháng 1 2016

điên à

 

25 tháng 2 2016

\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)

- Nếu \(m=1\)   thì (1) có dạng \(-2x+1>0\)    nên có nghiệm \(x<\frac{1}{2}\)

- Nếu \(m\ne1\)   thì (1) là bất phương trình bậc 2 với \(a=m-1\)  và biệt thức \(\Delta'=-2m+5m-2\) 

Trong trường hợp \(\Delta'\ge0\)

ta kí hiệu 

\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\)    ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\)     \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)

Lập bảng xét dấu ta được

+ Nếu \(m\le\frac{1}{2}\)   thì \(a<0\)    ; \(\Delta'\le0\)

nên (1) vô nghiệm

+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)

\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\)  hoặc \(x_2\)<x

+ Nếu m>2 thì a>0; \(\Delta'<0\)

nên (1) có tập nghiệm T(1)=R.

Ta có kết luận :

* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm

* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm

\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)

* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)

* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm

T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)

* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)

5 tháng 5 2017

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

5 tháng 5 2017

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

1 tháng 1 2022

đề là như thế này à \(\left(m+1\right)x^2-2mx=m+5x-2\)

1 tháng 1 2022

\(\left(m+1\right)x^2-2mx=m+5x-2\\ \Leftrightarrow\left(m+1\right)x^2-2mx-m-5x+2=0\\ \Leftrightarrow\left(m+1\right)x^2-\left(2m+5\right)x+2-m=0\)

Ta có:\(\Delta=\left[-\left(2m+5\right)\right]^2-4\left(m+1\right)\left(2-m\right)\)

              \(=\left(2m+5\right)^2-4\left(-m^2+m+2\right)\\ =4m^2+20m+25+4m^2-4m-8\\ =8m^2+16m+17\)

Để pt có 2 nghiệm phân biệt thì Δ>0 hay:

\(8m^2+16m+17>0\Rightarrow x\in R\)

Để phương trình có nghiệm kép thì Δ=0 hay:

\(8m^2+16m+17=0\Rightarrow x\in\varnothing\)

Để phương trình vô nghiệm thì Δ<0 hay:

\(8m^2+16m+17< 0\Rightarrow x\in\varnothing\)