K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ​}=\left(1-m\right)^2+4m=\left(m+1\right)^2\)

Để phương trình có nghiệm kép thì m+1=0

hay m=-1

Để phương trình có hai nghiệm phân biệt thì m+1>0

hay m>-1

b: 

TH1: m=3

Pt sẽ là -6x-3=0

hay x=-1/2

TH2: m<>3

\(\text{Δ​}=\left(-2m\right)^2-4\cdot\left(m-3\right)\left(m-6\right)\)

\(=4m^2-4\left(m^2-9m+18\right)\)

\(=4m^2-4m^2+36m-72=36m-72\)

Để phương trình vô nghiệm thì 36m-72<0

hay m<2
Để phương trình có nghiệm kép thì 36m-72=0

hay m=2

Để phương trình có hai nghiệm phân biệt thì 36m-72>0

hay m>2

29 tháng 11 2015

- Nếu m = 3 ta có: -6x + 2 = 0 \(\Rightarrow x=\frac{1}{3}\)

- Nếu m ≠ 3 thì PT là PT bậc hai. Khi đó:

\(\Delta'=m^2-\left(m-3\right)\left(m-1\right)=m^2-m^2+4m-3=4m-3\)

- Nếu  Δ' = 0 thì PT có nghiệm kép: \(x=\frac{m}{m-3}\)

- Nếu  Δ' > 0 thì PT có 2 nghiệm: \(x_1=\frac{m-\sqrt{4m-3}}{m-3}\text{ hoặc }x_2=\frac{m+\sqrt{4m-3}}{m-3}\)

 

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

a) \(x^2-4x+(1-m)=0\)

Ta có: \(\Delta'=(-2)^2-(1-m)=3+m\)

- Nếu \(m> -3\Rightarrow \Delta'=m+3> 0\). Khi đó, pt có hai nghiệm phân biệt.

- Nếu \(m< -3\Rightarrow \Delta'=m+3< 0\). Khi đó, pt vô nghiệm.

- Nếu \(m=-3\Rightarrow \Delta'=0\). PT có một nghiệm duy nhất \(x=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{2}{1}=2\)

b) \((m+1)x^2-2(m+2)x+m-3=0\)

- Nếu \(m=-1\). PT trở thành pt bậc nhất \(-2x-4=0\) có nghiệm duy nhất \(x=-2\)

- Nếu \(m\neq -1\), pt trở thành pt bậc hai.

Xét \(\Delta'=(m+2)^2-(m-3)(m+1)=6m+7\)

\(\bullet m=\frac{-7}{6}\Rightarrow \Delta'=0\). PT có nghiệm duy nhất

\(x=\frac{-b+\sqrt{\Delta}}{a}=\frac{\frac{5}{6}}{\frac{-1}{6}}=-5\)

\(\bullet m>\frac{-7}{6}\Rightarrow \Delta'>0\): PT có hai nghiệm phân biệt.

\(\bullet m< \frac{-7}{6}\Rightarrow \Delta'< 0\): PT vô nghiệm.

Tóm lại:

\(m=-1\) pt có nghiệm duy nhất \(x=-2\)

\(m=-\frac{7}{6}\) pt có nghiệm duy nhất $x=-5$

\(m\neq -1, m> \frac{-7}{6}\), pt có hai nghiệm phân biệt

\(m< \frac{-7}{6}\) thì pt vô nghiệm.

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm

27 tháng 11 2016

chịu@@@@@@@@@

23 tháng 10 2016

\(\left|x+m\right|=2+\left|x-m\right|\) ( Hai vế đều dương nên bình phương hai vế không cần điều kiện)

\(\Leftrightarrow x^2+2mx+m^2=4+4\left|x-m\right|+x^2-2mx+m^2\) 

\(\Leftrightarrow4mx=4+4\left|x-m\right|\)

\(\Leftrightarrow mx=1+\left|x-m\right|\)

\(\Leftrightarrow mx-1=\left|x-m\right|\) (1)  Điều kiện: \(mx-1\ge0\) (*)

Với: \(mx-1\ge0\) 

\(\left(1\right)\Leftrightarrow m^2x^2-2mx+1=x^2-2mx+m^2\)

\(\Leftrightarrow m^2x^2+1=x^2+m^2\)

\(\Leftrightarrow\left(m^2-1\right)x^2=m^2-1\) (2)

TH1: \(\left(m^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

+ Với \(m=1\) thì  \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge1\\\left(2\right)\Leftrightarrow0=0\left(\text{luôn đúng với mọi x}\right)\end{cases}}\Leftrightarrow x\ge0\) 

+ Với \(m=-1\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le-1\\\left(2\right)\Leftrightarrow0=0\left(\text{luôn đúng với mọi x }\right)\end{cases}\Leftrightarrow}x\le-1\)

TH2: Với \(m=0\) thì \(\left(\text{*}\right)\Leftrightarrow0-1\ge0\) ( vô lý ) => vô nghiệm

TH3: \(\left(m^2-1\right)\ne0\Leftrightarrow\orbr{\begin{cases}m\ne1\\m\ne-1\end{cases}}\)

+ Với: \(\hept{\begin{cases}m< 0\\m\ne-1\end{cases}}\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le\frac{1}{m}\\\left(2\right)\Leftrightarrow x^2=\frac{m^2-1}{m^2-1}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le\frac{1}{m}< 0\\x=\text{1 hoặc -1}\end{cases}}\Leftrightarrow x=-1\) 

+ Với: \(\hept{\begin{cases}m>0\\m\ne1\end{cases}}\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge\frac{1}{m}\\\left(2\right)\Leftrightarrow x^2=\frac{m^2-1}{m^2-1}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge\frac{1}{m}>0\\\left(2\right)\Leftrightarrow x^2=\text{1 hoặc -1}\end{cases}}\Leftrightarrow x=1\)

Tự kết luận nhé

23 tháng 10 2016

\(\left|x+m\right|=2+\left|x-m\right|\)

\(\Leftrightarrow\left(\left|x+m\right|\right)^2=\left(2+\left|x-m\right|\right)^2\)

\(\Leftrightarrow x^2+2mx+m^2=m^2-2mx-4m+x^2+4x+4\)

\(\Leftrightarrow4mx+4m-4x-4=0\)

\(\Leftrightarrow4\left(m-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(x+1\right)=0\)

.....