Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\) \(\begin{cases}x\le1;2\le x\\-3\le x\le4\\x\le-2;2\le x\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-3\le x\le-2\\2\le x\le4\end{cases}\)
Vậy hệ đã cho có tập nghiệm T = \(\left[-3;-2\right]\cup\left[2;4\right]\)
\(\begin{cases}x^5-3x^4+2x^2-2x+2\ge0\\x^4-2x^3-x+2=0\\x^2-3x+2=0\\\left(x^2-1\right)\left(x-2\right)=0\end{cases}\) (*)
\(x^5-3x^4+2x^2-2x+2\ge0\) (1)
\(x^4-2x^3-x+2=0\) (2)
\(x^2-3x+2=0\) (3)
\(\left(x^2-1\right)\left(x-2\right)=0\) (4)
Từ
\(x^2-3x+2=0\) (3) \(\Leftrightarrow\) x=1 hoặc x=2
x=1 thỏa mãn tất cả các phương trình, bất phương trình còn lại nên là nghiệm của hệ
x=2 không thỏa mãn (1) nên x=2 không là nghiệm của hệ
Vậy hệ phương trình (*) có nghiệm duy nhất là x=1
\(\Leftrightarrow\) \(\begin{cases}-5\le x\le4\\-7\le x\le0\\4\le x\le5\end{cases}\) \(\Leftrightarrow\) \(-7\le x\le5\)
Vậy tập nghiệm là \(\left[-7;5\right]\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\) (1)
Xét các bất phương trình thành phần
\(\left(x^2-1\right)\left(x-2\right)\ge0\) (a)
\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\) (b)
Ta có T(1)=T(a)\(\cap\) T(b)
Lập bảng xét dấy
\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
x | -\(\infty\) -1 1 2 +\(\infty\) |
f(x) | - 0 + 0 - 0 + |
Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)
Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1
- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)
Xét các trường hợp sau :
+ Trường hợp 1 :
\(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
+ Trường hợp 2
\(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)
+ Trường hợp 3
\(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\) \(\Leftrightarrow\) \(\frac{1}{2}\le a\le1\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Trường hợp 4
1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)
+ Trường hợp 5 :
a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)
Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm
Từ đó ta kết luận :
+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)
+ Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)
+ Khi 0<a<\(\frac{1}{2}\) hệ có tập nghiệm T(1) = \(\left[a;1\right]\)
+ Khi \(\frac{1}{2}\)\(\le\)a \(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)
\(\begin{cases}x^2-3x+2=0\\x^2-100=0\\2x^2-x-1\le0\\x^2-6x-55\ge0\end{cases}\) (1) \(\Leftrightarrow\) \(\begin{cases}x=1\\x=-10\\-\frac{1}{2}\le x\le1\\x\le-5\end{cases}\) hoặc \(\begin{cases}x=2\\x=10\\-\frac{1}{2}\le x\le1\\11\le x\end{cases}\)
\(\Leftrightarrow\)\(x\in\left(-\infty;-5\right)\cup\left[-\frac{1}{2};1\right]\cup\left\{2;10\right\}\cup\left(11;+\infty\right)\)
Vậy hệ đã cho có tập nghiệm
T(1) = \(\left(-\infty;-5\right)\cup\left[-\frac{1}{2};1\right]\cup\left\{2;10\right\}\cup\left(11;+\infty\right)\)