Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
a)
Cách 1:
Ta có: \(x^2-10x+9=0\)
\(\Leftrightarrow x^2-x-9x+9=0\)
\(\Leftrightarrow x\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
Vậy: S={1;9}
Cách 2:
Ta có: \(x^2-10x+9=0\)
\(\Leftrightarrow x^2-10x+25-16=0\)
\(\Leftrightarrow\left(x-5\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
Vậy: S={9;1}
b)
Cách 1:
Ta có: \(8x^2-2x-15=0\)
\(\Leftrightarrow8x^2-12x+10x-15=0\)
\(\Leftrightarrow4x\left(2x-3\right)+5\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)
Cách 2:
Ta có: \(8x^2-2x-15=0\)
\(\Leftrightarrow8\left(x^2-\frac{1}{4}x-\frac{15}{8}\right)=0\)
\(\Leftrightarrow x^2-\frac{1}{4}x-\frac{15}{8}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{8}+\frac{1}{64}-\frac{121}{64}=0\)
\(\Leftrightarrow\left(x-\frac{1}{8}\right)^2=\frac{121}{64}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{8}=\frac{11}{8}\\x-\frac{1}{8}=-\frac{11}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{8}=\frac{3}{2}\\x=\frac{-11+1}{8}=\frac{-10}{8}=\frac{-5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)
c) Ta có: \(2x^2+8x-7=0\)
\(\Leftrightarrow2\left(x^2+4x-\frac{7}{2}\right)=0\)
\(\Leftrightarrow x^2+4x+4-\frac{15}{2}=0\)
\(\Leftrightarrow\left(x+2\right)^2=\frac{15}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{\frac{15}{2}}\\x+2=-\sqrt{\frac{15}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{15}{2}}-2\\x=-\sqrt{\frac{15}{2}}-2\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{\frac{15}{2}}-2;-\sqrt{\frac{15}{2}}-2\right\}\)
d) Ta có: \(3x^2-15x+3=0\)
\(\Leftrightarrow3\left(x^2-5x+1\right)=0\)
\(\Leftrightarrow x^2-5x+1=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{21}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{21}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{21}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{21}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{21}+5}{2}\\x=\frac{-\sqrt{21}+5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{\sqrt{21}+5}{2};\frac{-\sqrt{21}+5}{2}\right\}\)
e) Ta có: \(16x^2-24x-4=0\)
\(\Leftrightarrow4\left(4x^2-6x-1\right)=0\)
\(\Leftrightarrow4x^2-6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{13}{4}=0\)
\(\Leftrightarrow\left(2x-\frac{3}{2}\right)^2=\frac{13}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{13}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{3+\sqrt{13}}{2}\\2x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}:2=\frac{3+\sqrt{13}}{4}\\x=\frac{3-\sqrt{13}}{2}:2=\frac{3-\sqrt{13}}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3+\sqrt{13}}{4};\frac{3-\sqrt{13}}{4}\right\}\)
f) Ta có: \(-5x^2+6x+3=0\)
\(\Leftrightarrow-5\left(x^2-\frac{6}{5}x-\frac{3}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{6}{5}x-\frac{3}{5}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{5}+\frac{9}{25}-\frac{24}{25}=0\)
\(\Leftrightarrow\left(x-\frac{3}{5}\right)^2=\frac{24}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{5}=\frac{2\sqrt{6}}{5}\\x-\frac{3}{5}=\frac{-2\sqrt{6}}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+2\sqrt{6}}{5}\\x=\frac{3-2\sqrt{6}}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3+2\sqrt{6}}{5};\frac{3-2\sqrt{6}}{5}\right\}\)
i) Ta có: \(6x^2-9x+40=0\)
\(\Leftrightarrow6\left(x^2-\frac{3}{2}x+\frac{20}{3}\right)=0\)
\(\Leftrightarrow x^2-\frac{3}{2}x+\frac{20}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{293}{48}=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2+\frac{293}{48}=0\)(vô lý)
Vậy: \(S=\varnothing\)
a) \(3x^2+x-4=0\)
\(\Leftrightarrow\)\(3x^2-3x+4x-4=0\)
\(\Leftrightarrow\)\(3x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-\frac{4}{3}\end{cases}}\)
Vậy..
b) \(2x^2-x-28=0\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=-3.5\end{cases}}\)
Vậy...
c) \(6x^2-x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{6}\end{cases}}\)
Vậy....
d) \(3x^2-5=0\)
\(\Leftrightarrow\)\(3x^2=5\)
\(\Leftrightarrow\)\(x^2=\frac{5}{3}\)
\(\Leftrightarrow\)\(x=\pm\sqrt{\frac{5}{3}}\)
Vậy...