K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Cách này có được không ạ?Em không chắc đâu nha!

ĐKXĐ: \(x\ne-1;y\ne0\)

\(HPT\Leftrightarrow\hept{\begin{cases}\frac{3y-2x}{x+1}-\frac{2x}{y}=2\\\frac{2\left(3y+2x\right)}{x+1}+\frac{2x}{y}+1=8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{3y}{x+1}-\frac{2x}{y}-\frac{2x}{x+1}=2\\\frac{2\left(3y+2x\right)}{x+1}+\frac{2x}{y}=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3y}{x+1}-\frac{2x}{y}-\frac{2x}{x+1}=2\\2.\frac{3y}{x+1}+\frac{2x}{y}+2.\frac{2x}{x+1}=7\end{cases}}\). Đặt \(\frac{3y}{x+1}=a;\frac{2x}{y}=b;\frac{2x}{x+1}=c\)

Hệ phương trình trở thành: \(\hept{\begin{cases}a-b-c=2\\2a+b+2c=7\end{cases}}\)(*).Cộng theo vế hai phương trình của hệ:

\(3a+c=9\Leftrightarrow c=9-3a\)(1).Thay vào cả hai phương trình của hệ (*)

Hệ phương trình tương đương với \(\hept{\begin{cases}4a-b-9=2\\-a+b+9=7\end{cases}}\) (**)

Cộng theo vế hai phương trình của hệ (**) được: 3a = 9 suy ra a = 3 (2)

Thay vào (1) tìm được c = 9 - 3a = 9 - 3 . 3  = 0 . Thay vào phương trình thứ nhất của hệ (*) suy ra: b =  a -c - 2 = 3 - 0 -2 = 1

Từ đây tổng hợp lại các kết quả ta được a = 3 ; b = 1; c = 0. Thay vào cái đặt ban đầu hết,ta được:

\(\frac{3y}{x+1}=3;\frac{2x}{y}=1;\frac{2x}{x+1}=0\)

+) \(\frac{2x}{x+1}=0\Rightarrow x=0\) ( thỏa mãn ĐKXĐ)

+) \(\frac{2x}{y}=1\Rightarrow y=2x=0\)( không thỏa mãn ĐKXĐ)

Vậy x = 0 và không tồn tại y thỏa mãn suy ra không có bộ số (x;y) nào thỏa mãn hệ phương trình.

14 tháng 11 2019

1.

\(ĐK:x\ne0\)

HPT

\(\Leftrightarrow\hept{\begin{cases}2x\left(x+y\right)-3x+1=0\\3x\left(x+y\right)-x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x\left(x+y\right)-\frac{9}{2}x+\frac{3}{2}=0\left(1\right)\\3x\left(x+y\right)-x-2=0\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\frac{7}{2}x=\frac{7}{2}\)

\(\Leftrightarrow x=1\left(3\right)\)

\(\left(1\right),\left(3\right)\Rightarrow3\left(1+y\right)-3=0\)

\(\Leftrightarrow y=0\)

Vay nghiem cua HPT la \(\left(1;0\right)\)

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

14 tháng 11 2017
Chịu
11 tháng 1 2022

google xin tài trợ chương trình

12 tháng 5 2019

Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)

Đặt \(x+2=a,y+1=b\)

Ta có hệ mới

\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)

Lấy (1).(2)

=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)

Nếu a,b khác dấu 

=> \(VT\le-4\)(loại)

Nếu a,b cùng dấu 

=> \(VT\ge4\)

Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5

=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)

Vậy x=1,y=2 hoặc x=-7,y=-6

19 tháng 5 2019

bn nào giải thick cho mk đoạn cùng dấu và trái dấu với 

tại sao cùng dấu lại >=4

trái dấu lại<=4

và làm thế nào để tính a,b

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

7 tháng 4 2020

với x, y,z>0

8 tháng 4 2020

Phương trình ( 2 ) \(\Leftrightarrow\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(3x+2y+z\right)=36\)

\(\Leftrightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)=22\)

Áp dụng BĐT Cô-si, ta có : 

\(6\left(\frac{x}{y}+\frac{y}{x}\right)\ge12;3\left(\frac{x}{z}+\frac{z}{x}\right)\ge6;2\left(\frac{z}{y}+\frac{y}{z}\right)\ge4\)

\(\Rightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)\ge22\)

Dấu "=" xảy ra khi x = y = z

khi đó : ( 1 ) \(\Leftrightarrow x^3+x^2+x-14=0\)\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)

\(\Leftrightarrow x=2\)

Vậy hệ phương trình có nghiệm duy nhất x = y = z = 2

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé