K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(x^4-2x^3+3x^2-4x+3=0\)

\(\Leftrightarrow x^4-4x^3+6x^2-4x+1+2x^3-6x^2+6x-2+3x^2-6x+3+1=0\)

\(\Leftrightarrow\left(x-1\right)^4+2\left(x^3-3x^2+3x-1\right)+3\left(x^2-2x+1\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1=0\)

Dê thấy: \(\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1>0\) (

Hay pt vô nghiệm

18 tháng 8 2017

thanks

18 tháng 7 2015

dùng phương pháp đặt ẩn phụ

1 tháng 8 2017

\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)

\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)

1 tháng 8 2017

Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d

b) \(2x^4+5x^3+x^2+5x+2=0\)

Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:

\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)

\(\Leftrightarrow2y^2+5y-3=0\)

PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3

Với y=1/2 thì không tìm được x

Với y=-3 thì tìm được 2 nghiệm, tự giải

14 tháng 8 2020

4x3 - 13x2 + 9x - 18

= 4x3 - 12x2 - x2 + 3x + 6x - 18

= 4x2(x - 3) - x(x - 3) + 6(x - 3)

= (x - 3)(4x2 - x + 6)

x2 + 5x - 6

= x2 + 2x + 3x - 6

= x(x + 2) - 3(x + 2)

= (x + 2)(x - 3)

x3 + 8x2 + 17x + 10

= x3 + x2 + 7x2 + 7x + 10x + 10

= x2(x + 1) + 7x(x + 1) + 10(x + 1)

= (x + 1)(x2 + 7x + 10)

= (x + 1)(x2 + 5x + 2x + 10)

= (x + 1)[ x(x + 5) + 2(x + 5)]

= (x + 1)(x + 5)(x + 2)

x3 + 3x2 + 6x + 4

= x3 + 3x2 + 3x + 1 + 3x + 3

= (x + 1)3 + 3(x + 1)

= (x + 1)[(x + 1)2 + 3]

= (x + 1)(x2 + 2x + 1 + 3)

= (x + 1)(x2 + 2x + 4)

2x3 - 12x2 + 17x - 2

= 2x3 - 8x2 - 4x2 + x + 16x - 2

= (2x3 - 8x2 + x) - (4x2 - 16x + 2)

= x(2x2 - 8x + 1) - 2(2x2 - 8x + 1)

= (2x2 - 8x + 1)(x - 2)

15 tháng 8 2020

Cảm ơn nhiều ạ

30 tháng 7 2018

\(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=9\\2x-3=9\\x-1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=6\\x=10\end{matrix}\right.\)

Vậy \(x=\left\{3,5;6;10\right\}\)

d: Sửa đề: \(\left(4x-5\right)^2\cdot\left(2x-3\right)\left(x-1\right)=9\)

image

a: \(\Leftrightarrow\left(2x^2+x\right)^2-3\left(2x^2+x\right)-\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)\left(2x^2+x-3\right)-\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow\left(2x^2+x-3\right)\left(2x^2+x-1\right)=0\)

\(\Leftrightarrow\left(2x^2+3x-2x-3\right)\left(2x^2+2x-x-1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)\left(x+1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};1;-1;\dfrac{1}{2}\right\}\)

29 tháng 2 2020

câu d, xem lại đề bài nha!

Hỏi đáp ToánHỏi đáp Toán