Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
ĐKXĐ: \(-4\le x\le1\)
Đặt \(\sqrt{x+4}-\sqrt{1-x}=t\)
\(\Rightarrow t^2=5-2\sqrt{\left(x+4\right)\left(1-x\right)}\Rightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=\frac{5-t^2}{2}\)
Pt trở thành:
\(t\left(1+\frac{5-t^2}{2}\right)=3\Leftrightarrow t\left(7-t^2\right)=6\)
\(\Leftrightarrow t^3-7t+6=0\Leftrightarrow\left(t+3\right)\left(t-1\right)\left(t-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=1\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+4}-\sqrt{1-x}=-3\\\sqrt{x+4}-\sqrt{1-x}=1\\\sqrt{x+4}-\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}+3=\sqrt{1-x}\left(vn\right)\\\sqrt{x+4}=1+\sqrt{1-x}\\\sqrt{x+4}=2+\sqrt{1-x}\end{matrix}\right.\) (1 vô nghiệm do \(VT\ge3;VP\le\sqrt{5}< 3\))
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2-x+2\sqrt{1-x}\\x+4=5-x+4\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{1-x}\left(x\ge-1\right)\\2x-1=4\sqrt{1-x}\left(x\ge\frac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=1-x\\4x^2-4x+1=16-16x\end{matrix}\right.\) \(\Leftrightarrow...\)
a) ĐKXD:...
\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)
Đến đây dễ rồi
NX: x = 0 là 1 nghiệm của pt
Nếu \(x\ne0\)
\(ĐKXĐ:x\ge3\)
Ta có : \(\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
\(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}-\sqrt{x\left(x-3\right)}=0\)(1)
Vì mỗi ngoặc trong căn đều dương nên ta tách ra được
\(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\sqrt{x}=0\left(h\right)\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)
*Nếu \(\sqrt{x}=0\)
\(\Rightarrow x=0\)(loại vì ko thỏa mãn ĐKXĐ)
*Nếu \(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt{x+2}+\sqrt{x-2}\)
Dễ thấy VT < VP
=> pt vô nghiệm
Vậy pt có 1 nghiệm duy nhất x = 0
Bổ sung chỗ ĐKXĐ nhé !
\(ĐKXĐ:\orbr{\begin{cases}x\ge3\\x\le-2\end{cases}}\)
Còn phần tiếp theo làm tương tự !