Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x-1}\)
\(\Leftrightarrow1-\sqrt{x^2-x}=x-1\)
\(\Leftrightarrow2-x=\sqrt{x^2-x}\)
\(\Leftrightarrow x^2-4x+4=x^2-x\)
\(\Leftrightarrow-3x=-4\Leftrightarrow x=\frac{4}{3}\)
\(\sqrt{x^2+4x+3}+\sqrt{x^2+x}=\sqrt{3x^2+4x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}-\sqrt{\left(x+1\right)\left(3x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+3}+\sqrt{x}-\sqrt{3x+1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+3}+\sqrt{x}=\sqrt{3x+1}\end{cases}}\)
Suy ra x=-1 pt còn lại bình lên là thấy vô nghiệm
Đề là \(\sqrt{\left(x+1\right)}+2\left(x+1\right)=x-1+\sqrt{\left(1-x\right)}+3\sqrt{1-x^2}\)?
Đk : \(\hept{\begin{cases}x-2\ge0\\x-1\ge\end{cases}}\Leftrightarrow x\ge2\left(1\right)\)
Nhẩm thấy x= 2 là nghiệm của phương trình nên ta thêm bớt để nhóm nhân tử chung là x = 2
\(\left(x-2\right)+\sqrt{x-2}=2\left(\sqrt{x-1}-1\right)\)\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-1-1\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-2\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]=0\)