Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
đặt a = \(x^2+4x-5\) vào bt ta được:
\(a\left(a-16\right)-297=0\Leftrightarrow a^2-16a+64-361=0\)
\(\Leftrightarrow\left(a-8\right)^2-19^2=0\Leftrightarrow\left(a-27\right)\left(a+11\right)=0\)
\(\Leftrightarrow\left(x^2+4x-32\right)\left(x^2+4+6\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+8\right)\left(\left(x+2\right)^2+2\right)=0\)
\(\left\{{}\begin{matrix}x-4=0\\x+8=0\\\left(x+2\right)^2=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x^2-3x-x+3\right)\left(x^2+7x+5x+35\right)=297\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2+12x+35\right)=297\)
\(\Leftrightarrow x^4+12x^3+35x^2-4x^3-48x^2-140x+3x^2+36x+105=297\)
\(\Leftrightarrow x^4+8x^3-10x^2-104x+105-297=0\)
\(\Leftrightarrow x^4-4x^3+12x^3-48x^2+38x^2-152x+48x-192=0\)
\(\Leftrightarrow x^3\left(x-4\right)+12x^2\left(x-4\right)+38x\left(x-4\right)+48\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3+12x^2+38x+48\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3+8x^2+4x^2+32x+6x+48\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x+8\right)+4x\left(x+8\right)+6\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+8\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+8=0\\x^2+4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-8\\x\notin R\end{matrix}\right.\)
\(S=\left\{4;-8\right\}\)
a)(x-2)(x+2)(x^2-10)=72
<=>(x^2-4)(x^2-10)=72
<=>x^4-14x^2+40=72
<=>x^4-14x^2-32=0
<=>x^4-16x^2+2x^2-32=0
<=>x^2(x^2-16)+2(x^2-16)=0
<=>(x^2-16)(x^2+2)=0
<=>(x-4)(x+4)(x^2+2)=0
<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)
<=>x=4,x=-4
S={4,-4}
a)(x-2))x+2)(x^2-10)=72
=(x^2-4)(x^2-10)=72
Đặt x^2-7 là t
Phương trình trở thành (t+3)(t-3)=72
t^2-9=72
t^2=81
suy ra t= cộng trừ 9
*t=9
x^2-7=9
x^2=16
suy ra x=cộng trừ 4
*t=-9
x^2-7=-9
x^2=-2
suy ra x không xác định
vậy S={cộng trừ 4}
2(x2+x+1)2-7(x-1)2=13(x3-1)
<=> 2(x2+x+1)2-7(x-1)2-13(x3-1)=0
<=>2(x2+x+1)2-14(x3-1)+(x3-1)-7(x-1)2=0
<=> 2(x2+x+1)(x2+x+1-7x+7)+(x-1)(x2+x+1-7x+7)=0
<=> (2x2+2x+2)(x2-6x+8)+(x-1)(x2-6x+8)=0
<=> (x2-6x+8)(2x2+3x+1)=0
<=> (x2-4x-2x+8)(2x2+2x+x+1)=0
<=> [x(x-4)-2(x-4)][2x(x+1)+(x+1)]=0
<=> (x-4)(x-2)(x+1)(2x+1)=0
Đến đây dễ rồi nhé bạn
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)
\(\Leftrightarrow\)\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)
Đặt \(x^2+4x-5=t\) ta có:
\(t\left(t-16\right)-297=0\)
\(\Leftrightarrow\)\(t^2-16t+64-361=0\)
\(\Leftrightarrow\) \(\left(t-8\right)^2-361=0\)
\(\Leftrightarrow\)\(\left(t-8-19\right)\left(t-8+19\right)=0\)
\(\Leftrightarrow\)\(\left(t-27\right)\left(t+11\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-27=0\\t+11=0\end{cases}}\)
Thay trở lại ta được: \(\orbr{\begin{cases}x^2+4x-32=0\\x^2+4x+6=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-4\right)\left(x+8\right)=0\\\left(x+2\right)^2+2=0\left(L\right)\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
Vậy...
\(\Rightarrow\)[ (x-1)(x+5) ].[ (x-3)(x+7) ] = 297
\(\Rightarrow\)( x^2 + 4x - 5 ) . ( x^2 + 4x - 21) = 297 ( bước này mình làm tắt)
\(\Rightarrow\)(x^2 + 4x - 13 + 8) . (x^2 + 4x -13 - 8) = 297
\(\Rightarrow\)(x^2 + 4x - 13)^2 - 64 = 297
\(\Rightarrow\)(x^2 + 4x -13)^2 = 361
\(\Rightarrow\)x^2 + 4x - 13 = 19 hoặc x^ + 4x -13 = -19
phần còn lại tự bạn giải nha
a ) \(\left(2x-1\right)\left(x-3\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\x-3=0\\x+7=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=3\\x=-7\end{array}\right.\)
Vậy phương trình đã cho các nghiệm \(x=-\frac{1}{2};x=3;x=-7.\)
b ) \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
Vậy phương trình đã cho các nghiệm \(x=1,x=3\).
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Rightarrow\left(x^2+4x-21\right)\left(x^2+4x-5\right)-297=0\)
Đặt \(t=x^2+4x-5\) ta có:
\(\left(t-16\right)t-297=0\)\(\Rightarrow t^2-16t-297=0\)
\(\Rightarrow t^2-27t+11t-297=0\)
\(\Rightarrow t\left(t-27\right)+11\left(t-27\right)=0\)
\(\Rightarrow\left(t+11\right)\left(t-27\right)=0\)\(\Rightarrow\left[\begin{matrix}t=-11\\t=27\end{matrix}\right.\)
*)Xét \(t=-11\Rightarrow x^2+4x-5=-11\)
\(\Rightarrow x^2+4x+6=0\Rightarrow\left(x+2\right)^2+2>0\left(loai\right)\)
*)Xét \(t=27\Rightarrow x^2+4x-5=27\)
\(\Rightarrow x^2+4x-32=0\Rightarrow\left(x+8\right)\left(x-4\right)=0\)\(\Rightarrow\left[\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
Ta có:\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
Đặt \(x^2+4x-5=t\) thì \(t\left(t-16\right)=297\)
\(\Leftrightarrow t^2-16t-297=0\Leftrightarrow t^2-27t+11t-297=0\)
\(\Leftrightarrow t\left(t-27\right)+11\left(t-27\right)=0\Leftrightarrow\left(t+11\right)\left(t-27\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=-11\\t=27\end{cases}}\)
Với \(t=-11\) thì \(x^2+4x-5=-11\Leftrightarrow x^2+4x+6=0\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lí)
Với \(t=27\) thì \(x^2+4x-5=27\Leftrightarrow x^2+4x-32=0\Leftrightarrow x^2-4x+8x-32=0\)
\(\Leftrightarrow x\left(x-4\right)+8\left(x-4\right)=0\Leftrightarrow\left(x+8\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-8\\x=4\end{cases}}\)
Tập nghiệm của pt \(S=\left\{-8,4\right\}\)
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Leftrightarrow\left(x^2+5x-x-5\right)\left(x^2+7x-3x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
Đặt \(x^2+4x-13=m\)
Ta có : \(\left(m+8\right)\left(m-8\right)=297\)
\(\Leftrightarrow m^2-8^2=297\)
\(\Leftrightarrow m^2=361\)
\(\Leftrightarrow m=\pm19\)
+) Với m = 19 ta có : \(x^2+4x-13=19\)
\(\Leftrightarrow x^2+4x-32=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(8x-32\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+8\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
+) Với m = -19 ta có : \(x^2+4x-13=-19\)
\(\Leftrightarrow x^2+4x+6=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)
\(\Leftrightarrow\left(x+2\right)^2=-2\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{4;-8\right\}\)