Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-5}{2012}+\dfrac{x-4}{2013}=\dfrac{x-3}{2014}+\dfrac{x-2}{2015}\)
\(\Rightarrow\left(\dfrac{x-5}{2012}-1\right)+\left(\dfrac{x-4}{2013}-1\right)=\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-2}{2015}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}=\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}\)
\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}-\dfrac{x-2017}{2015}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\right)=0\)
\(\Rightarrow x-2017=0\Leftrightarrow x=2017\)
Vậy x = 2017
a, Làm
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)
<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
<=> x+2021=0
<=> x=-2021
Kl:......................
b, Làmmmmm
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)
<=> x=2006
Kl:..............
\(\Leftrightarrow\left(\dfrac{x+1}{2022}+1\right)+\left(\dfrac{x+3}{2020}+1\right)+\left(\dfrac{x+5}{2018}+1\right)+\left(\dfrac{x+7}{2016}+1\right)=0\)
=>x+2023=0
=>x=-2023
pt <=> (x/2012 - 1) + (x+1/2013 - 1) + (x+2/2014 - 1) + (x+3/2015 - 1) + (x+4/2016 - 1) = 0
<=> x-2012/2012 + x-2012/2013 + x-2012/2014 + x-2012/2015 + x-2012/2016 = 0
<=> (x-2012).(1/2012+1/2013+1/2014+1/2015+1/2016) = 0
<=> x-2012 = 0 ( vì 1/2012+1/2013+1/2014+1/2015+1/2016 > 0 )
<=> x=2012
Vậy x=2012
Tk mk nha
Ta có :
\(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Leftrightarrow\)\(\left(\frac{x}{2012}-1\right)+\left(\frac{x+1}{2013}-1\right)+\left(\frac{x+2}{2014}-1\right)+\left(\frac{x+3}{2015}-1\right)+\left(\frac{x+4}{2016}-1\right)=5-5\)
\(\Leftrightarrow\)\(\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Leftrightarrow\)\(\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\ne0\)
\(\Rightarrow\)\(x-2012=0\)
\(\Rightarrow\)\(x=2012\)
Vậy \(x=2012\)
Chúc bạn học tốt ~
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
<=> x + 2015 = 0 ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x = - 2015
Vậy x = -2015.
Giải phương trình :
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
\(\dfrac{x-3}{2012}+\dfrac{x-2}{2013}=\dfrac{x-2013}{2}+\dfrac{x-2012}{3}\)(mk nghĩ đề như thế này)
\(\Leftrightarrow\dfrac{x-3}{2012}-1+\dfrac{x-2}{2013}-1=\dfrac{x-2013}{2}-1+\dfrac{x-2012}{3}-1\)
\(\Leftrightarrow\dfrac{x-2015}{2012}+\dfrac{x-2015}{2013}=\dfrac{x-2015}{2}+\dfrac{x-2015}{3}\)
\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow x=2015\)(vì \(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\))
\(\dfrac{x-3}{2012}+\dfrac{x-2}{2013}=\dfrac{x-2013}{2}+\dfrac{x-2015}{3}\\ \Leftrightarrow\left(\dfrac{x-3}{2012}-1\right)+\left(\dfrac{x-2}{2013}-1\right)=\left(\dfrac{x-2013}{2}-1\right)+\left(\dfrac{x-2015}{3}-1\right)\\ \Leftrightarrow\dfrac{x-2018}{2012}+\dfrac{x-2018}{2013}-\dfrac{x-2018}{2}-\dfrac{x-2018}{3}=0\\ \Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\\ \Leftrightarrow x-2018=0\left(\text{Vì }\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\right)\\ x=2018\)
Vậy phương trình có nghiệm \(x=2018\)
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)
\(\Rightarrow x+10=0\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)
\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0
Vậy x = 2012
a, (x+1)/9 +1 + (x+2)/8 = (x+3)/7 + 1 + (x+4)/6 + 1
<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6
<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0
vì 1/9 +1/8 -1/7 - 1/6 khác 0
=> x+10=0
=> x=-10
\(x+\dfrac{2015}{2}+x+\dfrac{2013}{3}>-x-\dfrac{2013}{-4}-x-\dfrac{2012}{-5}\\ \Leftrightarrow x+1007.5+x+\dfrac{2014}{3}>\dfrac{2013x}{4}-x+402.4\\ \Leftrightarrow x+\dfrac{10075}{10}+x+\dfrac{2014}{3}>\dfrac{2013x}{4}-x+\dfrac{4024}{10}\\ \Leftrightarrow2x+\dfrac{2015}{2}+\dfrac{2014}{3}>\dfrac{2013x-4x}{4}+\dfrac{4024}{10}\\ \Leftrightarrow2x+\dfrac{6045+4028}{6}>\dfrac{2009x}{4}+\dfrac{4024}{10}\)
\(\Leftrightarrow2x+\dfrac{10073}{6}>\dfrac{2009x}{4}+\dfrac{4024}{10}\\ \Leftrightarrow120x+10.10073>15.2009x+6.4024\\ \Leftrightarrow120x+100730>30135x+24144\\ \Leftrightarrow-30015x>-76586\\ \Leftrightarrow x< \dfrac{76586}{30015}\)
Tập nghiệm \(S=\left\{x|x< \dfrac{76586}{30015}\right\}\)
\(\frac{x-1}{2012}-1+\frac{x+2}{2015}-1+\frac{x+5}{2018}-1+\frac{x+7}{2020}-1+4=4\)
<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2015}+\frac{x-2013}{2018}+\frac{x-2013}{2020}=0\)
<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2015}+\frac{1}{2018}+\frac{1}{2020}\right)=0\)
<=>x-2013=0
<=> x=2013
(vì \(\frac{1}{2012}+\frac{1}{2015}+\frac{1}{2018}+\frac{1}{2020}\)> 0 )
duyệt dùm ^^